weezl/encode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
//! A module for all encoding needs.
use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
use crate::alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "std")]
use crate::error::StreamResult;
#[cfg(feature = "std")]
use std::io::{self, BufRead, Write};
/// The state for encoding data with an LZW algorithm.
///
/// The same structure can be utilized with streams as well as your own buffers and driver logic.
/// It may even be possible to mix them if you are sufficiently careful not to lose any written
/// data in the process.
///
/// This is a sans-IO implementation, meaning that it only contains the state of the encoder and
/// the caller will provide buffers for input and output data when calling the basic
/// [`encode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
/// methods for enoding with a particular style of common IO.
///
/// * [`encode`] for encoding once without any IO-loop.
/// * [`into_async`] for encoding with the `futures` traits for asynchronous IO.
/// * [`into_stream`] for encoding with the standard `io` traits.
/// * [`into_vec`] for in-memory encoding.
///
/// [`encode_bytes`]: #method.encode_bytes
/// [`encode`]: #method.encode
/// [`into_async`]: #method.into_async
/// [`into_stream`]: #method.into_stream
/// [`into_vec`]: #method.into_vec
pub struct Encoder {
/// Internally dispatch via a dynamic trait object. This did not have any significant
/// performance impact as we batch data internally and this pointer does not change after
/// creation!
state: Box<dyn Stateful + Send + 'static>,
}
/// A encoding stream sink.
///
/// See [`Encoder::into_stream`] on how to create this type.
///
/// [`Encoder::into_stream`]: struct.Encoder.html#method.into_stream
#[cfg_attr(
not(feature = "std"),
deprecated = "This type is only useful with the `std` feature."
)]
#[cfg_attr(not(feature = "std"), allow(dead_code))]
pub struct IntoStream<'d, W> {
encoder: &'d mut Encoder,
writer: W,
buffer: Option<StreamBuf<'d>>,
default_size: usize,
}
/// An async decoding sink.
///
/// See [`Encoder::into_async`] on how to create this type.
///
/// [`Encoder::into_async`]: struct.Encoder.html#method.into_async
#[cfg(feature = "async")]
pub struct IntoAsync<'d, W> {
encoder: &'d mut Encoder,
writer: W,
buffer: Option<StreamBuf<'d>>,
default_size: usize,
}
/// A encoding sink into a vector.
///
/// See [`Encoder::into_vec`] on how to create this type.
///
/// [`Encoder::into_vec`]: struct.Encoder.html#method.into_vec
pub struct IntoVec<'d> {
encoder: &'d mut Encoder,
vector: &'d mut Vec<u8>,
}
trait Stateful {
fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
fn mark_ended(&mut self) -> bool;
/// Reset the state tracking if end code has been written.
fn restart(&mut self);
/// Reset the encoder to the beginning, dropping all buffers etc.
fn reset(&mut self);
}
struct EncodeState<B: Buffer> {
/// The configured minimal code size.
min_size: u8,
/// The current encoding symbol tree.
tree: Tree,
/// If we have pushed the end code.
has_ended: bool,
/// If tiff then bumps are a single code sooner.
is_tiff: bool,
/// The code corresponding to the currently read characters.
current_code: Code,
/// The clear code for resetting the dictionary.
clear_code: Code,
/// The bit buffer for encoding.
buffer: B,
}
struct MsbBuffer {
/// The current code length.
code_size: u8,
/// The buffer bits.
buffer: u64,
/// The number of valid buffer bits.
bits_in_buffer: u8,
}
struct LsbBuffer {
/// The current code length.
code_size: u8,
/// The buffer bits.
buffer: u64,
/// The number of valid buffer bits.
bits_in_buffer: u8,
}
trait Buffer {
fn new(size: u8) -> Self;
/// Reset the code size in the buffer.
fn reset(&mut self, min_size: u8);
/// Apply effects of a Clear Code.
fn clear(&mut self, min_size: u8);
/// Insert a code into the buffer.
fn buffer_code(&mut self, code: Code);
/// Push bytes if the buffer space is getting small.
fn push_out(&mut self, out: &mut &mut [u8]) -> bool;
/// Flush all full bytes, returning if at least one more byte remains.
fn flush_out(&mut self, out: &mut &mut [u8]) -> bool;
/// Pad the buffer to a full byte.
fn buffer_pad(&mut self);
/// Increase the maximum code size.
fn bump_code_size(&mut self);
/// Return the maximum code with the current code size.
fn max_code(&self) -> Code;
/// Return the current code size in bits.
fn code_size(&self) -> u8;
}
/// One tree node for at most each code.
/// To avoid using too much memory we keep nodes with few successors in optimized form. This form
/// doesn't offer lookup by indexing but instead does a linear search.
#[derive(Default)]
struct Tree {
simples: Vec<Simple>,
complex: Vec<Full>,
keys: Vec<CompressedKey>,
}
#[derive(Clone, Copy)]
enum FullKey {
NoSuccessor,
Simple(u16),
Full(u16),
}
#[derive(Clone, Copy)]
struct CompressedKey(u16);
const SHORT: usize = 16;
#[derive(Clone, Copy)]
struct Simple {
codes: [Code; SHORT],
chars: [u8; SHORT],
count: u8,
}
#[derive(Clone, Copy)]
struct Full {
char_continuation: [Code; 256],
}
impl Encoder {
/// Create a new encoder with the specified bit order and symbol size.
///
/// The algorithm for dynamically increasing the code symbol bit width is compatible with the
/// original specification. In particular you will need to specify an `Lsb` bit oder to encode
/// the data portion of a compressed `gif` image.
///
/// # Panics
///
/// The `size` needs to be in the interval `2..=12`.
pub fn new(order: BitOrder, size: u8) -> Self {
type Boxed = Box<dyn Stateful + Send + 'static>;
super::assert_encode_size(size);
let state = match order {
BitOrder::Lsb => Box::new(EncodeState::<LsbBuffer>::new(size)) as Boxed,
BitOrder::Msb => Box::new(EncodeState::<MsbBuffer>::new(size)) as Boxed,
};
Encoder { state }
}
/// Create a TIFF compatible encoder with the specified bit order and symbol size.
///
/// The algorithm for dynamically increasing the code symbol bit width is compatible with the
/// TIFF specification, which is a misinterpretation of the original algorithm for increasing
/// the code size. It switches one symbol sooner.
///
/// # Panics
///
/// The `size` needs to be in the interval `2..=12`.
pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
type Boxed = Box<dyn Stateful + Send + 'static>;
super::assert_encode_size(size);
let state = match order {
BitOrder::Lsb => {
let mut state = Box::new(EncodeState::<LsbBuffer>::new(size));
state.is_tiff = true;
state as Boxed
}
BitOrder::Msb => {
let mut state = Box::new(EncodeState::<MsbBuffer>::new(size));
state.is_tiff = true;
state as Boxed
}
};
Encoder { state }
}
/// Encode some bytes from `inp` into `out`.
///
/// See [`into_stream`] for high-level functions (this interface is only available with the
/// `std` feature) and [`finish`] for marking the input data as complete.
///
/// When some input byte is invalid, i.e. is not smaller than `1 << size`, then that byte and
/// all following ones will _not_ be consumed and the `status` of the result will signal an
/// error. The result will also indicate that all bytes up to but not including the offending
/// byte have been consumed. You may try again with a fixed byte.
///
/// [`into_stream`]: #method.into_stream
/// [`finish`]: #method.finish
pub fn encode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
self.state.advance(inp, out)
}
/// Encode a single chunk of data.
///
/// This method will add an end marker to the encoded chunk.
///
/// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
/// buffer size, to supply an existing vector, to control whether an end marker is required, or
/// to preserve partial data in the case of a decoding error.
///
/// [`into_vec`]: #into_vec
///
/// # Example
///
/// ```
/// use weezl::{BitOrder, encode::Encoder};
///
/// let data = b"Hello, world";
/// let encoded = Encoder::new(BitOrder::Msb, 9)
/// .encode(data)
/// .expect("All bytes valid for code size");
/// ```
pub fn encode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
let mut output = Vec::new();
self.into_vec(&mut output).encode_all(data).status?;
Ok(output)
}
/// Construct a encoder into a writer.
#[cfg(feature = "std")]
pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
IntoStream {
encoder: self,
writer,
buffer: None,
default_size: STREAM_BUF_SIZE,
}
}
/// Construct a encoder into an async writer.
#[cfg(feature = "async")]
pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
IntoAsync {
encoder: self,
writer,
buffer: None,
default_size: STREAM_BUF_SIZE,
}
}
/// Construct an encoder into a vector.
///
/// All encoded data is appended and the vector is __not__ cleared.
///
/// Compared to `into_stream` this interface allows a high-level access to encoding without
/// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
/// special target exposes.
pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
IntoVec {
encoder: self,
vector: vec,
}
}
/// Mark the encoding as in the process of finishing.
///
/// The next following call to `encode_bytes` which is able to consume the complete input will
/// also try to emit an end code. It's not recommended, but also not unsound, to use different
/// byte slices in different calls from this point forward and thus to 'delay' the actual end
/// of the data stream. The behaviour after the end marker has been written is unspecified but
/// sound.
pub fn finish(&mut self) {
self.state.mark_ended();
}
/// Undo marking this data stream as ending.
/// FIXME: clarify how this interacts with padding introduced after end code.
#[allow(dead_code)]
pub(crate) fn restart(&mut self) {
self.state.restart()
}
/// Reset all internal state.
///
/// This produce an encoder as if just constructed with `new` but taking slightly less work. In
/// particular it will not deallocate any internal allocations. It will also avoid some
/// duplicate setup work.
pub fn reset(&mut self) {
self.state.reset()
}
}
#[cfg(feature = "std")]
impl<'d, W: Write> IntoStream<'d, W> {
/// Encode data from a reader.
///
/// This will drain the supplied reader. It will not encode an end marker after all data has
/// been processed.
pub fn encode(&mut self, read: impl BufRead) -> StreamResult {
self.encode_part(read, false)
}
/// Encode data from a reader and an end marker.
pub fn encode_all(mut self, read: impl BufRead) -> StreamResult {
self.encode_part(read, true)
}
/// Set the size of the intermediate encode buffer.
///
/// A buffer of this size is allocated to hold one part of the encoded stream when no buffer is
/// available and any encoding method is called. No buffer is allocated if `set_buffer` has
/// been called. The buffer is reused.
///
/// # Panics
/// This method panics if `size` is `0`.
pub fn set_buffer_size(&mut self, size: usize) {
assert_ne!(size, 0, "Attempted to set empty buffer");
self.default_size = size;
}
/// Use a particular buffer as an intermediate encode buffer.
///
/// Calling this sets or replaces the buffer. When a buffer has been set then it is used
/// instead of a dynamically allocating a buffer. Note that the size of the buffer is relevant
/// for efficient encoding as there is additional overhead from `write` calls each time the
/// buffer has been filled.
///
/// # Panics
/// This method panics if the `buffer` is empty.
pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
self.buffer = Some(StreamBuf::Borrowed(buffer));
}
fn encode_part(&mut self, mut read: impl BufRead, finish: bool) -> StreamResult {
let IntoStream {
encoder,
writer,
buffer,
default_size,
} = self;
enum Progress {
Ok,
Done,
}
let mut bytes_read = 0;
let mut bytes_written = 0;
let read_bytes = &mut bytes_read;
let write_bytes = &mut bytes_written;
let outbuf: &mut [u8] =
match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
StreamBuf::Borrowed(slice) => &mut *slice,
StreamBuf::Owned(vec) => &mut *vec,
};
assert!(!outbuf.is_empty());
let once = move || {
let data = read.fill_buf()?;
if data.is_empty() {
if finish {
encoder.finish();
} else {
return Ok(Progress::Done);
}
}
let result = encoder.encode_bytes(data, &mut outbuf[..]);
*read_bytes += result.consumed_in;
*write_bytes += result.consumed_out;
read.consume(result.consumed_in);
let done = result.status.map_err(|err| {
io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
})?;
if let LzwStatus::Done = done {
writer.write_all(&outbuf[..result.consumed_out])?;
return Ok(Progress::Done);
}
if let LzwStatus::NoProgress = done {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"No more data but no end marker detected",
));
}
writer.write_all(&outbuf[..result.consumed_out])?;
Ok(Progress::Ok)
};
let status = core::iter::repeat_with(once)
// scan+fuse can be replaced with map_while
.scan((), |(), result| match result {
Ok(Progress::Ok) => Some(Ok(())),
Err(err) => Some(Err(err)),
Ok(Progress::Done) => None,
})
.fuse()
.collect();
StreamResult {
bytes_read,
bytes_written,
status,
}
}
}
impl IntoVec<'_> {
/// Encode data from a slice.
pub fn encode(&mut self, read: &[u8]) -> VectorResult {
self.encode_part(read, false)
}
/// Decode data from a reader, adding an end marker.
pub fn encode_all(mut self, read: &[u8]) -> VectorResult {
self.encode_part(read, true)
}
fn grab_buffer(&mut self) -> (&mut [u8], &mut Encoder) {
const CHUNK_SIZE: usize = 1 << 12;
let decoder = &mut self.encoder;
let length = self.vector.len();
// Use the vector to do overflow checks and w/e.
self.vector.reserve(CHUNK_SIZE);
// FIXME: encoding into uninit buffer?
self.vector.resize(length + CHUNK_SIZE, 0u8);
(&mut self.vector[length..], decoder)
}
fn encode_part(&mut self, part: &[u8], finish: bool) -> VectorResult {
let mut result = VectorResult {
consumed_in: 0,
consumed_out: 0,
status: Ok(LzwStatus::Ok),
};
enum Progress {
Ok,
Done,
}
// Converting to mutable refs to move into the `once` closure.
let read_bytes = &mut result.consumed_in;
let write_bytes = &mut result.consumed_out;
let mut data = part;
// A 64 MB buffer is quite large but should get alloc_zeroed.
// Note that the decoded size can be up to quadratic in code block.
let once = move || {
// Grab a new output buffer.
let (outbuf, encoder) = self.grab_buffer();
if finish {
encoder.finish();
}
// Decode as much of the buffer as fits.
let result = encoder.encode_bytes(data, &mut outbuf[..]);
// Do the bookkeeping and consume the buffer.
*read_bytes += result.consumed_in;
*write_bytes += result.consumed_out;
data = &data[result.consumed_in..];
let unfilled = outbuf.len() - result.consumed_out;
let filled = self.vector.len() - unfilled;
self.vector.truncate(filled);
// Handle the status in the result.
let done = result.status?;
if let LzwStatus::Done = done {
Ok(Progress::Done)
} else {
Ok(Progress::Ok)
}
};
// Decode chunks of input data until we're done.
let status: Result<(), _> = core::iter::repeat_with(once)
// scan+fuse can be replaced with map_while
.scan((), |(), result| match result {
Ok(Progress::Ok) => Some(Ok(())),
Err(err) => Some(Err(err)),
Ok(Progress::Done) => None,
})
.fuse()
.collect();
if let Err(err) = status {
result.status = Err(err);
}
result
}
}
// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
// trip over the usage of await, which is a reserved keyword in that edition/version. It only
// contains an impl block.
#[cfg(feature = "async")]
#[path = "encode_into_async.rs"]
mod impl_encode_into_async;
impl<B: Buffer> EncodeState<B> {
fn new(min_size: u8) -> Self {
let clear_code = 1 << min_size;
let mut tree = Tree::default();
tree.init(min_size);
let mut state = EncodeState {
min_size,
tree,
has_ended: false,
is_tiff: false,
current_code: clear_code,
clear_code,
buffer: B::new(min_size),
};
state.buffer_code(clear_code);
state
}
}
impl<B: Buffer> Stateful for EncodeState<B> {
fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
let c_in = inp.len();
let c_out = out.len();
let mut status = Ok(LzwStatus::Ok);
'encoding: loop {
if self.push_out(&mut out) {
break;
}
if inp.is_empty() && self.has_ended {
let end = self.end_code();
if self.current_code != end {
if self.current_code != self.clear_code {
self.buffer_code(self.current_code);
// When reading this code, the decoder will add an extra entry to its table
// before reading th end code. Thusly, it may increase its code size based
// on this additional entry.
if self.tree.keys.len() + usize::from(self.is_tiff)
> usize::from(self.buffer.max_code())
&& self.buffer.code_size() < MAX_CODESIZE
{
self.buffer.bump_code_size();
}
}
self.buffer_code(end);
self.current_code = end;
self.buffer_pad();
}
break;
}
let mut next_code = None;
let mut bytes = inp.iter();
while let Some(&byte) = bytes.next() {
if self.min_size < 8 && byte >= 1 << self.min_size {
status = Err(LzwError::InvalidCode);
break 'encoding;
}
inp = bytes.as_slice();
match self.tree.iterate(self.current_code, byte) {
Ok(code) => self.current_code = code,
Err(_) => {
next_code = Some(self.current_code);
self.current_code = u16::from(byte);
break;
}
}
}
match next_code {
// No more bytes, no code produced.
None => break,
Some(code) => {
self.buffer_code(code);
if self.tree.keys.len() + usize::from(self.is_tiff)
> usize::from(self.buffer.max_code()) + 1
&& self.buffer.code_size() < MAX_CODESIZE
{
self.buffer.bump_code_size();
}
if self.tree.keys.len() > MAX_ENTRIES {
self.buffer_code(self.clear_code);
self.tree.reset(self.min_size);
self.buffer.clear(self.min_size);
}
}
}
}
if inp.is_empty() && self.current_code == self.end_code() {
if !self.flush_out(&mut out) {
status = Ok(LzwStatus::Done);
}
}
BufferResult {
consumed_in: c_in - inp.len(),
consumed_out: c_out - out.len(),
status,
}
}
fn mark_ended(&mut self) -> bool {
core::mem::replace(&mut self.has_ended, true)
}
fn restart(&mut self) {
self.has_ended = false;
}
fn reset(&mut self) {
self.restart();
self.current_code = self.clear_code;
self.tree.reset(self.min_size);
self.buffer.reset(self.min_size);
self.buffer_code(self.clear_code);
}
}
impl<B: Buffer> EncodeState<B> {
fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
self.buffer.push_out(out)
}
fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
self.buffer.flush_out(out)
}
fn end_code(&self) -> Code {
self.clear_code + 1
}
fn buffer_pad(&mut self) {
self.buffer.buffer_pad();
}
fn buffer_code(&mut self, code: Code) {
self.buffer.buffer_code(code);
}
}
impl Buffer for MsbBuffer {
fn new(min_size: u8) -> Self {
MsbBuffer {
code_size: min_size + 1,
buffer: 0,
bits_in_buffer: 0,
}
}
fn reset(&mut self, min_size: u8) {
self.code_size = min_size + 1;
self.buffer = 0;
self.bits_in_buffer = 0;
}
fn clear(&mut self, min_size: u8) {
self.code_size = min_size + 1;
}
fn buffer_code(&mut self, code: Code) {
let shift = 64 - self.bits_in_buffer - self.code_size;
self.buffer |= u64::from(code) << shift;
self.bits_in_buffer += self.code_size;
}
fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
if self.bits_in_buffer + 2 * self.code_size < 64 {
return false;
}
self.flush_out(out)
}
fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
let want = usize::from(self.bits_in_buffer / 8);
let count = want.min((*out).len());
let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
*out = tail;
for b in bytes {
*b = ((self.buffer & 0xff00_0000_0000_0000) >> 56) as u8;
self.buffer <<= 8;
self.bits_in_buffer -= 8;
}
count < want
}
fn buffer_pad(&mut self) {
let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
self.bits_in_buffer += to_byte;
}
fn bump_code_size(&mut self) {
self.code_size += 1;
}
fn max_code(&self) -> Code {
(1 << self.code_size) - 1
}
fn code_size(&self) -> u8 {
self.code_size
}
}
impl Buffer for LsbBuffer {
fn new(min_size: u8) -> Self {
LsbBuffer {
code_size: min_size + 1,
buffer: 0,
bits_in_buffer: 0,
}
}
fn reset(&mut self, min_size: u8) {
self.code_size = min_size + 1;
self.buffer = 0;
self.bits_in_buffer = 0;
}
fn clear(&mut self, min_size: u8) {
self.code_size = min_size + 1;
}
fn buffer_code(&mut self, code: Code) {
self.buffer |= u64::from(code) << self.bits_in_buffer;
self.bits_in_buffer += self.code_size;
}
fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
if self.bits_in_buffer + 2 * self.code_size < 64 {
return false;
}
self.flush_out(out)
}
fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
let want = usize::from(self.bits_in_buffer / 8);
let count = want.min((*out).len());
let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
*out = tail;
for b in bytes {
*b = (self.buffer & 0x0000_0000_0000_00ff) as u8;
self.buffer >>= 8;
self.bits_in_buffer -= 8;
}
count < want
}
fn buffer_pad(&mut self) {
let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
self.bits_in_buffer += to_byte;
}
fn bump_code_size(&mut self) {
self.code_size += 1;
}
fn max_code(&self) -> Code {
(1 << self.code_size) - 1
}
fn code_size(&self) -> u8 {
self.code_size
}
}
impl Tree {
fn init(&mut self, min_size: u8) {
// We need a way to represent the state of a currently empty buffer. We use the clear code
// for this, thus create one complex mapping that leads to the one-char base codes.
self.keys
.resize((1 << min_size) + 2, FullKey::NoSuccessor.into());
self.complex.push(Full {
char_continuation: [0; 256],
});
let map_of_begin = self.complex.last_mut().unwrap();
for ch in 0u16..256 {
map_of_begin.char_continuation[usize::from(ch)] = ch;
}
self.keys[1 << min_size] = FullKey::Full(0).into();
}
fn reset(&mut self, min_size: u8) {
self.simples.clear();
self.keys.truncate((1 << min_size) + 2);
// Keep entry for clear code.
self.complex.truncate(1);
// The first complex is not changed..
for k in self.keys[..(1 << min_size) + 2].iter_mut() {
*k = FullKey::NoSuccessor.into();
}
self.keys[1 << min_size] = FullKey::Full(0).into();
}
fn at_key(&self, code: Code, ch: u8) -> Option<Code> {
let key = self.keys[usize::from(code)];
match FullKey::from(key) {
FullKey::NoSuccessor => None,
FullKey::Simple(idx) => {
let nexts = &self.simples[usize::from(idx)];
let successors = nexts
.codes
.iter()
.zip(nexts.chars.iter())
.take(usize::from(nexts.count));
for (&scode, &sch) in successors {
if sch == ch {
return Some(scode);
}
}
None
}
FullKey::Full(idx) => {
let full = &self.complex[usize::from(idx)];
let precode = full.char_continuation[usize::from(ch)];
if usize::from(precode) < MAX_ENTRIES {
Some(precode)
} else {
None
}
}
}
}
/// Iterate to the next char.
/// Return Ok when it was already in the tree or creates a new entry for it and returns Err.
fn iterate(&mut self, code: Code, ch: u8) -> Result<Code, Code> {
if let Some(next) = self.at_key(code, ch) {
Ok(next)
} else {
Err(self.append(code, ch))
}
}
fn append(&mut self, code: Code, ch: u8) -> Code {
let next: Code = self.keys.len() as u16;
let key = self.keys[usize::from(code)];
// TODO: with debug assertions, check for non-existence
match FullKey::from(key) {
FullKey::NoSuccessor => {
let new_key = FullKey::Simple(self.simples.len() as u16);
self.simples.push(Simple::default());
let simples = self.simples.last_mut().unwrap();
simples.codes[0] = next;
simples.chars[0] = ch;
simples.count = 1;
self.keys[usize::from(code)] = new_key.into();
}
FullKey::Simple(idx) if usize::from(self.simples[usize::from(idx)].count) < SHORT => {
let nexts = &mut self.simples[usize::from(idx)];
let nidx = usize::from(nexts.count);
nexts.chars[nidx] = ch;
nexts.codes[nidx] = next;
nexts.count += 1;
}
FullKey::Simple(idx) => {
let new_key = FullKey::Full(self.complex.len() as u16);
let simples = &self.simples[usize::from(idx)];
self.complex.push(Full {
char_continuation: [Code::max_value(); 256],
});
let full = self.complex.last_mut().unwrap();
for (&pch, &pcont) in simples.chars.iter().zip(simples.codes.iter()) {
full.char_continuation[usize::from(pch)] = pcont;
}
self.keys[usize::from(code)] = new_key.into();
}
FullKey::Full(idx) => {
let full = &mut self.complex[usize::from(idx)];
full.char_continuation[usize::from(ch)] = next;
}
}
self.keys.push(FullKey::NoSuccessor.into());
next
}
}
impl Default for FullKey {
fn default() -> Self {
FullKey::NoSuccessor
}
}
impl Default for Simple {
fn default() -> Self {
Simple {
codes: [0; SHORT],
chars: [0; SHORT],
count: 0,
}
}
}
impl From<CompressedKey> for FullKey {
fn from(CompressedKey(key): CompressedKey) -> Self {
match (key >> MAX_CODESIZE) & 0xf {
0 => FullKey::Full(key & 0xfff),
1 => FullKey::Simple(key & 0xfff),
_ => FullKey::NoSuccessor,
}
}
}
impl From<FullKey> for CompressedKey {
fn from(full: FullKey) -> Self {
CompressedKey(match full {
FullKey::NoSuccessor => 0x2000,
FullKey::Simple(code) => 0x1000 | code,
FullKey::Full(code) => code,
})
}
}
#[cfg(test)]
mod tests {
use super::{BitOrder, Encoder, LzwError, LzwStatus};
use crate::alloc::vec::Vec;
use crate::decode::Decoder;
#[cfg(feature = "std")]
use crate::StreamBuf;
#[test]
fn invalid_input_rejected() {
const BIT_LEN: u8 = 2;
let ref input = [0, 1 << BIT_LEN /* invalid */, 0];
let ref mut target = [0u8; 128];
let mut encoder = Encoder::new(BitOrder::Msb, BIT_LEN);
encoder.finish();
// We require simulation of normality, that is byte-for-byte compression.
let result = encoder.encode_bytes(input, target);
assert!(if let Err(LzwError::InvalidCode) = result.status {
true
} else {
false
});
assert_eq!(result.consumed_in, 1);
let fixed = encoder.encode_bytes(&[1, 0], &mut target[result.consumed_out..]);
assert!(if let Ok(LzwStatus::Done) = fixed.status {
true
} else {
false
});
assert_eq!(fixed.consumed_in, 2);
// Okay, now test we actually fixed it.
let ref mut compare = [0u8; 4];
let mut todo = &target[..result.consumed_out + fixed.consumed_out];
let mut free = &mut compare[..];
let mut decoder = Decoder::new(BitOrder::Msb, BIT_LEN);
// Decode with up to 16 rounds, far too much but inconsequential.
for _ in 0..16 {
if decoder.has_ended() {
break;
}
let result = decoder.decode_bytes(todo, free);
assert!(result.status.is_ok());
todo = &todo[result.consumed_in..];
free = &mut free[result.consumed_out..];
}
let remaining = { free }.len();
let len = compare.len() - remaining;
assert_eq!(todo, &[]);
assert_eq!(compare[..len], [0, 1, 0]);
}
#[test]
#[should_panic]
fn invalid_code_size_low() {
let _ = Encoder::new(BitOrder::Msb, 1);
}
#[test]
#[should_panic]
fn invalid_code_size_high() {
let _ = Encoder::new(BitOrder::Msb, 14);
}
fn make_decoded() -> Vec<u8> {
const FILE: &'static [u8] =
include_bytes!(concat!(env!("CARGO_MANIFEST_DIR"), "/Cargo.lock"));
return Vec::from(FILE);
}
#[test]
#[cfg(feature = "std")]
fn into_stream_buffer_no_alloc() {
let encoded = make_decoded();
let mut encoder = Encoder::new(BitOrder::Msb, 8);
let mut output = vec![];
let mut buffer = [0; 512];
let mut istream = encoder.into_stream(&mut output);
istream.set_buffer(&mut buffer[..]);
istream.encode(&encoded[..]).status.unwrap();
match istream.buffer {
Some(StreamBuf::Borrowed(_)) => {}
None => panic!("Decoded without buffer??"),
Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
}
}
#[test]
#[cfg(feature = "std")]
fn into_stream_buffer_small_alloc() {
struct WriteTap<W: std::io::Write>(W);
const BUF_SIZE: usize = 512;
impl<W: std::io::Write> std::io::Write for WriteTap<W> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
assert!(buf.len() <= BUF_SIZE);
self.0.write(buf)
}
fn flush(&mut self) -> std::io::Result<()> {
self.0.flush()
}
}
let encoded = make_decoded();
let mut encoder = Encoder::new(BitOrder::Msb, 8);
let mut output = vec![];
let mut istream = encoder.into_stream(WriteTap(&mut output));
istream.set_buffer_size(512);
istream.encode(&encoded[..]).status.unwrap();
match istream.buffer {
Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
None => panic!("Decoded without buffer??"),
}
}
#[test]
#[cfg(feature = "std")]
fn reset() {
let encoded = make_decoded();
let mut encoder = Encoder::new(BitOrder::Msb, 8);
let mut reference = None;
for _ in 0..2 {
let mut output = vec![];
let mut buffer = [0; 512];
let mut istream = encoder.into_stream(&mut output);
istream.set_buffer(&mut buffer[..]);
istream.encode_all(&encoded[..]).status.unwrap();
encoder.reset();
if let Some(reference) = &reference {
assert_eq!(output, *reference);
} else {
reference = Some(output);
}
}
}
}