use crate::scalar::{Float, Scalar};
use crate::{vector, Point, Vector};
use arrayvec::ArrayVec;
#[inline]
pub fn min_max<S: Float>(a: S, b: S) -> (S, S) {
if a < b {
(a, b)
} else {
(b, a)
}
}
#[inline]
pub fn tangent<S: Float>(v: Vector<S>) -> Vector<S> {
vector(-v.y, v.x)
}
#[inline]
pub fn normalized_tangent<S: Scalar>(v: Vector<S>) -> Vector<S> {
tangent(v).normalize()
}
#[inline]
pub fn directed_angle<S: Scalar>(v1: Vector<S>, v2: Vector<S>) -> S {
let angle = S::fast_atan2(v2.y, v2.x) - S::fast_atan2(v1.y, v1.x);
if angle < S::ZERO {
angle + S::TWO * S::PI()
} else {
angle
}
}
pub fn directed_angle2<S: Scalar>(center: Point<S>, a: Point<S>, b: Point<S>) -> S {
directed_angle(a - center, b - center)
}
pub fn cubic_polynomial_roots<S: Scalar>(a: S, b: S, c: S, d: S) -> ArrayVec<S, 3> {
let mut result = ArrayVec::new();
let m = a.abs().max(b.abs()).max(c.abs()).max(d.abs());
let epsilon = S::epsilon_for(m);
if S::abs(a) < epsilon {
if S::abs(b) < epsilon {
if S::abs(c) < epsilon {
return result;
}
result.push(-d / c);
return result;
}
let delta = c * c - S::FOUR * b * d;
if delta > S::ZERO {
let sqrt_delta = S::sqrt(delta);
result.push((-c - sqrt_delta) / (S::TWO * b));
result.push((-c + sqrt_delta) / (S::TWO * b));
} else if S::abs(delta) < epsilon {
result.push(-c / (S::TWO * b));
}
return result;
}
let frac_1_3 = S::ONE / S::THREE;
let bn = b / a;
let cn = c / a;
let dn = d / a;
let delta0 = (S::THREE * cn - bn * bn) / S::NINE;
let delta1 = (S::NINE * bn * cn - S::value(27.0) * dn - S::TWO * bn * bn * bn) / S::value(54.0);
let delta_01 = delta0 * delta0 * delta0 + delta1 * delta1;
if delta_01 >= S::ZERO {
let delta_p_sqrt = delta1 + S::sqrt(delta_01);
let delta_m_sqrt = delta1 - S::sqrt(delta_01);
let s = delta_p_sqrt.signum() * S::abs(delta_p_sqrt).powf(frac_1_3);
let t = delta_m_sqrt.signum() * S::abs(delta_m_sqrt).powf(frac_1_3);
result.push(-bn * frac_1_3 + (s + t));
if S::abs(s - t) < epsilon && S::abs(s + t) >= epsilon {
result.push(-bn * frac_1_3 - (s + t) / S::TWO);
}
} else {
let theta = S::acos(delta1 / S::sqrt(-delta0 * delta0 * delta0));
let two_sqrt_delta0 = S::TWO * S::sqrt(-delta0);
result.push(two_sqrt_delta0 * Float::cos(theta * frac_1_3) - bn * frac_1_3);
result.push(
two_sqrt_delta0 * Float::cos((theta + S::TWO * S::PI()) * frac_1_3) - bn * frac_1_3,
);
result.push(
two_sqrt_delta0 * Float::cos((theta + S::FOUR * S::PI()) * frac_1_3) - bn * frac_1_3,
);
}
result
}
#[test]
fn cubic_polynomial() {
fn assert_approx_eq(a: ArrayVec<f32, 3>, b: &[f32], epsilon: f32) {
for i in 0..a.len() {
if f32::abs(a[i] - b[i]) > epsilon {
std::println!("{a:?} != {b:?}");
}
assert!((a[i] - b[i]).abs() <= epsilon);
}
assert_eq!(a.len(), b.len());
}
assert_approx_eq(
cubic_polynomial_roots(2.0, -4.0, 2.0, 0.0),
&[0.0, 1.0],
0.0000001,
);
assert_approx_eq(
cubic_polynomial_roots(-1.0, 1.0, -1.0, 1.0),
&[1.0],
0.000001,
);
assert_approx_eq(
cubic_polynomial_roots(-2.0, 2.0, -1.0, 10.0),
&[2.0],
0.00005,
);
assert_approx_eq(
cubic_polynomial_roots(1.0, -3.0, 3.0, -1.0),
&[1.0],
0.00005,
);
assert_approx_eq(
cubic_polynomial_roots(0.0, 1.0, -5.0, -14.0),
&[-2.0, 7.0],
0.00005,
);
assert_approx_eq(cubic_polynomial_roots(0.0, 1.0, -6.0, 9.0), &[3.0], 0.00005);
assert_approx_eq(cubic_polynomial_roots(0.0, 0.0, 2.0, 1.0), &[-0.5], 0.00005);
assert_approx_eq(cubic_polynomial_roots(0.0, 0.0, 0.0, 0.0), &[], 0.00005);
}