tokio/runtime/io/
scheduled_io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
use crate::io::interest::Interest;
use crate::io::ready::Ready;
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::Mutex;
use crate::runtime::io::{Direction, ReadyEvent, Tick};
use crate::util::bit;
use crate::util::linked_list::{self, LinkedList};
use crate::util::WakeList;

use std::cell::UnsafeCell;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{AcqRel, Acquire};
use std::task::{Context, Poll, Waker};

/// Stored in the I/O driver resource slab.
#[derive(Debug)]
// # This struct should be cache padded to avoid false sharing. The cache padding rules are copied
// from crossbeam-utils/src/cache_padded.rs
//
// Starting from Intel's Sandy Bridge, spatial prefetcher is now pulling pairs of 64-byte cache
// lines at a time, so we have to align to 128 bytes rather than 64.
//
// Sources:
// - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
// - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107
//
// ARM's big.LITTLE architecture has asymmetric cores and "big" cores have 128-byte cache line size.
//
// Sources:
// - https://www.mono-project.com/news/2016/09/12/arm64-icache/
//
// powerpc64 has 128-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_ppc64x.go#L9
#[cfg_attr(
    any(
        target_arch = "x86_64",
        target_arch = "aarch64",
        target_arch = "powerpc64",
    ),
    repr(align(128))
)]
// arm, mips, mips64, sparc, and hexagon have 32-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_arm.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mipsle.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips64x.go#L9
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L17
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/hexagon/include/asm/cache.h#L12
#[cfg_attr(
    any(
        target_arch = "arm",
        target_arch = "mips",
        target_arch = "mips64",
        target_arch = "sparc",
        target_arch = "hexagon",
    ),
    repr(align(32))
)]
// m68k has 16-byte cache line size.
//
// Sources:
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/m68k/include/asm/cache.h#L9
#[cfg_attr(target_arch = "m68k", repr(align(16)))]
// s390x has 256-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_s390x.go#L7
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/s390/include/asm/cache.h#L13
#[cfg_attr(target_arch = "s390x", repr(align(256)))]
// x86, riscv, wasm, and sparc64 have 64-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/dda2991c2ea0c5914714469c4defc2562a907230/src/internal/cpu/cpu_x86.go#L9
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_wasm.go#L7
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L19
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/riscv/include/asm/cache.h#L10
//
// All others are assumed to have 64-byte cache line size.
#[cfg_attr(
    not(any(
        target_arch = "x86_64",
        target_arch = "aarch64",
        target_arch = "powerpc64",
        target_arch = "arm",
        target_arch = "mips",
        target_arch = "mips64",
        target_arch = "sparc",
        target_arch = "hexagon",
        target_arch = "m68k",
        target_arch = "s390x",
    )),
    repr(align(64))
)]
pub(crate) struct ScheduledIo {
    pub(super) linked_list_pointers: UnsafeCell<linked_list::Pointers<Self>>,

    /// Packs the resource's readiness and I/O driver latest tick.
    readiness: AtomicUsize,

    waiters: Mutex<Waiters>,
}

type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;

#[derive(Debug, Default)]
struct Waiters {
    /// List of all current waiters.
    list: WaitList,

    /// Waker used for `AsyncRead`.
    reader: Option<Waker>,

    /// Waker used for `AsyncWrite`.
    writer: Option<Waker>,
}

#[derive(Debug)]
struct Waiter {
    pointers: linked_list::Pointers<Waiter>,

    /// The waker for this task.
    waker: Option<Waker>,

    /// The interest this waiter is waiting on.
    interest: Interest,

    is_ready: bool,

    /// Should never be `!Unpin`.
    _p: PhantomPinned,
}

generate_addr_of_methods! {
    impl<> Waiter {
        unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
            &self.pointers
        }
    }
}

/// Future returned by `readiness()`.
struct Readiness<'a> {
    scheduled_io: &'a ScheduledIo,

    state: State,

    /// Entry in the waiter `LinkedList`.
    waiter: UnsafeCell<Waiter>,
}

enum State {
    Init,
    Waiting,
    Done,
}

// The `ScheduledIo::readiness` (`AtomicUsize`) is packed full of goodness.
//
// | shutdown | driver tick | readiness |
// |----------+-------------+-----------|
// |   1 bit  |  15 bits    +   16 bits |

const READINESS: bit::Pack = bit::Pack::least_significant(16);

const TICK: bit::Pack = READINESS.then(15);

const SHUTDOWN: bit::Pack = TICK.then(1);

// ===== impl ScheduledIo =====

impl Default for ScheduledIo {
    fn default() -> ScheduledIo {
        ScheduledIo {
            linked_list_pointers: UnsafeCell::new(linked_list::Pointers::new()),
            readiness: AtomicUsize::new(0),
            waiters: Mutex::new(Waiters::default()),
        }
    }
}

impl ScheduledIo {
    pub(crate) fn token(&self) -> mio::Token {
        mio::Token(super::EXPOSE_IO.expose_provenance(self))
    }

    /// Invoked when the IO driver is shut down; forces this `ScheduledIo` into a
    /// permanently shutdown state.
    pub(super) fn shutdown(&self) {
        let mask = SHUTDOWN.pack(1, 0);
        self.readiness.fetch_or(mask, AcqRel);
        self.wake(Ready::ALL);
    }

    /// Sets the readiness on this `ScheduledIo` by invoking the given closure on
    /// the current value, returning the previous readiness value.
    ///
    /// # Arguments
    /// - `tick`: whether setting the tick or trying to clear readiness for a
    ///    specific tick.
    /// - `f`: a closure returning a new readiness value given the previous
    ///   readiness.
    pub(super) fn set_readiness(&self, tick_op: Tick, f: impl Fn(Ready) -> Ready) {
        let _ = self.readiness.fetch_update(AcqRel, Acquire, |curr| {
            // If the io driver is shut down, then you are only allowed to clear readiness.
            debug_assert!(SHUTDOWN.unpack(curr) == 0 || matches!(tick_op, Tick::Clear(_)));

            const MAX_TICK: usize = TICK.max_value() + 1;
            let tick = TICK.unpack(curr);

            let new_tick = match tick_op {
                // Trying to clear readiness with an old event!
                Tick::Clear(t) if tick as u8 != t => return None,
                Tick::Clear(t) => t as usize,
                Tick::Set => tick.wrapping_add(1) % MAX_TICK,
            };
            let ready = Ready::from_usize(READINESS.unpack(curr));
            Some(TICK.pack(new_tick, f(ready).as_usize()))
        });
    }

    /// Notifies all pending waiters that have registered interest in `ready`.
    ///
    /// There may be many waiters to notify. Waking the pending task **must** be
    /// done from outside of the lock otherwise there is a potential for a
    /// deadlock.
    ///
    /// A stack array of wakers is created and filled with wakers to notify, the
    /// lock is released, and the wakers are notified. Because there may be more
    /// than 32 wakers to notify, if the stack array fills up, the lock is
    /// released, the array is cleared, and the iteration continues.
    pub(super) fn wake(&self, ready: Ready) {
        let mut wakers = WakeList::new();

        let mut waiters = self.waiters.lock();

        // check for AsyncRead slot
        if ready.is_readable() {
            if let Some(waker) = waiters.reader.take() {
                wakers.push(waker);
            }
        }

        // check for AsyncWrite slot
        if ready.is_writable() {
            if let Some(waker) = waiters.writer.take() {
                wakers.push(waker);
            }
        }

        'outer: loop {
            let mut iter = waiters.list.drain_filter(|w| ready.satisfies(w.interest));

            while wakers.can_push() {
                match iter.next() {
                    Some(waiter) => {
                        let waiter = unsafe { &mut *waiter.as_ptr() };

                        if let Some(waker) = waiter.waker.take() {
                            waiter.is_ready = true;
                            wakers.push(waker);
                        }
                    }
                    None => {
                        break 'outer;
                    }
                }
            }

            drop(waiters);

            wakers.wake_all();

            // Acquire the lock again.
            waiters = self.waiters.lock();
        }

        // Release the lock before notifying
        drop(waiters);

        wakers.wake_all();
    }

    pub(super) fn ready_event(&self, interest: Interest) -> ReadyEvent {
        let curr = self.readiness.load(Acquire);

        ReadyEvent {
            tick: TICK.unpack(curr) as u8,
            ready: interest.mask() & Ready::from_usize(READINESS.unpack(curr)),
            is_shutdown: SHUTDOWN.unpack(curr) != 0,
        }
    }

    /// Polls for readiness events in a given direction.
    ///
    /// These are to support `AsyncRead` and `AsyncWrite` polling methods,
    /// which cannot use the `async fn` version. This uses reserved reader
    /// and writer slots.
    pub(super) fn poll_readiness(
        &self,
        cx: &mut Context<'_>,
        direction: Direction,
    ) -> Poll<ReadyEvent> {
        let curr = self.readiness.load(Acquire);

        let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
        let is_shutdown = SHUTDOWN.unpack(curr) != 0;

        if ready.is_empty() && !is_shutdown {
            // Update the task info
            let mut waiters = self.waiters.lock();
            let waker = match direction {
                Direction::Read => &mut waiters.reader,
                Direction::Write => &mut waiters.writer,
            };

            // Avoid cloning the waker if one is already stored that matches the
            // current task.
            match waker {
                Some(waker) => waker.clone_from(cx.waker()),
                None => *waker = Some(cx.waker().clone()),
            }

            // Try again, in case the readiness was changed while we were
            // taking the waiters lock
            let curr = self.readiness.load(Acquire);
            let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
            let is_shutdown = SHUTDOWN.unpack(curr) != 0;
            if is_shutdown {
                Poll::Ready(ReadyEvent {
                    tick: TICK.unpack(curr) as u8,
                    ready: direction.mask(),
                    is_shutdown,
                })
            } else if ready.is_empty() {
                Poll::Pending
            } else {
                Poll::Ready(ReadyEvent {
                    tick: TICK.unpack(curr) as u8,
                    ready,
                    is_shutdown,
                })
            }
        } else {
            Poll::Ready(ReadyEvent {
                tick: TICK.unpack(curr) as u8,
                ready,
                is_shutdown,
            })
        }
    }

    pub(crate) fn clear_readiness(&self, event: ReadyEvent) {
        // This consumes the current readiness state **except** for closed
        // states. Closed states are excluded because they are final states.
        let mask_no_closed = event.ready - Ready::READ_CLOSED - Ready::WRITE_CLOSED;
        self.set_readiness(Tick::Clear(event.tick), |curr| curr - mask_no_closed);
    }

    pub(crate) fn clear_wakers(&self) {
        let mut waiters = self.waiters.lock();
        waiters.reader.take();
        waiters.writer.take();
    }
}

impl Drop for ScheduledIo {
    fn drop(&mut self) {
        self.wake(Ready::ALL);
    }
}

unsafe impl Send for ScheduledIo {}
unsafe impl Sync for ScheduledIo {}

impl ScheduledIo {
    /// An async version of `poll_readiness` which uses a linked list of wakers.
    pub(crate) async fn readiness(&self, interest: Interest) -> ReadyEvent {
        self.readiness_fut(interest).await
    }

    // This is in a separate function so that the borrow checker doesn't think
    // we are borrowing the `UnsafeCell` possibly over await boundaries.
    //
    // Go figure.
    fn readiness_fut(&self, interest: Interest) -> Readiness<'_> {
        Readiness {
            scheduled_io: self,
            state: State::Init,
            waiter: UnsafeCell::new(Waiter {
                pointers: linked_list::Pointers::new(),
                waker: None,
                is_ready: false,
                interest,
                _p: PhantomPinned,
            }),
        }
    }
}

unsafe impl linked_list::Link for Waiter {
    type Handle = NonNull<Waiter>;
    type Target = Waiter;

    fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
        *handle
    }

    unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
        ptr
    }

    unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
        Waiter::addr_of_pointers(target)
    }
}

// ===== impl Readiness =====

impl Future for Readiness<'_> {
    type Output = ReadyEvent;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        use std::sync::atomic::Ordering::SeqCst;

        let (scheduled_io, state, waiter) = unsafe {
            let me = self.get_unchecked_mut();
            (&me.scheduled_io, &mut me.state, &me.waiter)
        };

        loop {
            match *state {
                State::Init => {
                    // Optimistically check existing readiness
                    let curr = scheduled_io.readiness.load(SeqCst);
                    let is_shutdown = SHUTDOWN.unpack(curr) != 0;

                    // Safety: `waiter.interest` never changes
                    let interest = unsafe { (*waiter.get()).interest };
                    let ready = Ready::from_usize(READINESS.unpack(curr)).intersection(interest);

                    if !ready.is_empty() || is_shutdown {
                        // Currently ready!
                        let tick = TICK.unpack(curr) as u8;
                        *state = State::Done;
                        return Poll::Ready(ReadyEvent {
                            tick,
                            ready,
                            is_shutdown,
                        });
                    }

                    // Wasn't ready, take the lock (and check again while locked).
                    let mut waiters = scheduled_io.waiters.lock();

                    let curr = scheduled_io.readiness.load(SeqCst);
                    let mut ready = Ready::from_usize(READINESS.unpack(curr));
                    let is_shutdown = SHUTDOWN.unpack(curr) != 0;

                    if is_shutdown {
                        ready = Ready::ALL;
                    }

                    let ready = ready.intersection(interest);

                    if !ready.is_empty() || is_shutdown {
                        // Currently ready!
                        let tick = TICK.unpack(curr) as u8;
                        *state = State::Done;
                        return Poll::Ready(ReadyEvent {
                            tick,
                            ready,
                            is_shutdown,
                        });
                    }

                    // Not ready even after locked, insert into list...

                    // Safety: called while locked
                    unsafe {
                        (*waiter.get()).waker = Some(cx.waker().clone());
                    }

                    // Insert the waiter into the linked list
                    //
                    // safety: pointers from `UnsafeCell` are never null.
                    waiters
                        .list
                        .push_front(unsafe { NonNull::new_unchecked(waiter.get()) });
                    *state = State::Waiting;
                }
                State::Waiting => {
                    // Currently in the "Waiting" state, implying the caller has
                    // a waiter stored in the waiter list (guarded by
                    // `notify.waiters`). In order to access the waker fields,
                    // we must hold the lock.

                    let waiters = scheduled_io.waiters.lock();

                    // Safety: called while locked
                    let w = unsafe { &mut *waiter.get() };

                    if w.is_ready {
                        // Our waker has been notified.
                        *state = State::Done;
                    } else {
                        // Update the waker, if necessary.
                        w.waker.as_mut().unwrap().clone_from(cx.waker());
                        return Poll::Pending;
                    }

                    // Explicit drop of the lock to indicate the scope that the
                    // lock is held. Because holding the lock is required to
                    // ensure safe access to fields not held within the lock, it
                    // is helpful to visualize the scope of the critical
                    // section.
                    drop(waiters);
                }
                State::Done => {
                    // Safety: State::Done means it is no longer shared
                    let w = unsafe { &mut *waiter.get() };

                    let curr = scheduled_io.readiness.load(Acquire);
                    let is_shutdown = SHUTDOWN.unpack(curr) != 0;

                    // The returned tick might be newer than the event
                    // which notified our waker. This is ok because the future
                    // still didn't return `Poll::Ready`.
                    let tick = TICK.unpack(curr) as u8;

                    // The readiness state could have been cleared in the meantime,
                    // but we allow the returned ready set to be empty.
                    let ready = Ready::from_usize(READINESS.unpack(curr)).intersection(w.interest);

                    return Poll::Ready(ReadyEvent {
                        tick,
                        ready,
                        is_shutdown,
                    });
                }
            }
        }
    }
}

impl Drop for Readiness<'_> {
    fn drop(&mut self) {
        let mut waiters = self.scheduled_io.waiters.lock();

        // Safety: `waiter` is only ever stored in `waiters`
        unsafe {
            waiters
                .list
                .remove(NonNull::new_unchecked(self.waiter.get()))
        };
    }
}

unsafe impl Send for Readiness<'_> {}
unsafe impl Sync for Readiness<'_> {}