zune_jpeg/
mcu.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
 * Copyright (c) 2023.
 *
 * This software is free software;
 *
 * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
 */

use alloc::{format, vec};
use core::cmp::min;

use zune_core::bytestream::ZReaderTrait;
use zune_core::colorspace::ColorSpace;
use zune_core::colorspace::ColorSpace::Luma;
use zune_core::log::{error, trace, warn};

use crate::bitstream::BitStream;
use crate::components::SampleRatios;
use crate::decoder::MAX_COMPONENTS;
use crate::errors::DecodeErrors;
use crate::marker::Marker;
use crate::misc::{calculate_padded_width, setup_component_params};
use crate::worker::{color_convert, upsample};
use crate::JpegDecoder;

/// The size of a DC block for a MCU.

pub const DCT_BLOCK: usize = 64;

impl<T: ZReaderTrait> JpegDecoder<T> {
    /// Check for existence of DC and AC Huffman Tables
    pub(crate) fn check_tables(&self) -> Result<(), DecodeErrors> {
        // check that dc and AC tables exist outside the hot path
        for component in &self.components {
            let _ = &self
                .dc_huffman_tables
                .get(component.dc_huff_table)
                .as_ref()
                .ok_or_else(|| {
                    DecodeErrors::HuffmanDecode(format!(
                        "No Huffman DC table for component {:?} ",
                        component.component_id
                    ))
                })?
                .as_ref()
                .ok_or_else(|| {
                    DecodeErrors::HuffmanDecode(format!(
                        "No DC table for component {:?}",
                        component.component_id
                    ))
                })?;

            let _ = &self
                .ac_huffman_tables
                .get(component.ac_huff_table)
                .as_ref()
                .ok_or_else(|| {
                    DecodeErrors::HuffmanDecode(format!(
                        "No Huffman AC table for component {:?} ",
                        component.component_id
                    ))
                })?
                .as_ref()
                .ok_or_else(|| {
                    DecodeErrors::HuffmanDecode(format!(
                        "No AC table for component {:?}",
                        component.component_id
                    ))
                })?;
        }
        Ok(())
    }

    /// Decode MCUs and carry out post processing.
    ///
    /// This is the main decoder loop for the library, the hot path.
    ///
    /// Because of this, we pull in some very crazy optimization tricks hence readability is a pinch
    /// here.
    #[allow(
        clippy::similar_names,
        clippy::too_many_lines,
        clippy::cast_possible_truncation
    )]
    #[inline(never)]
    pub(crate) fn decode_mcu_ycbcr_baseline(
        &mut self, pixels: &mut [u8]
    ) -> Result<(), DecodeErrors> {
        setup_component_params(self)?;

        // check dc and AC tables
        self.check_tables()?;

        let (mut mcu_width, mut mcu_height);

        if self.is_interleaved {
            // set upsampling functions
            self.set_upsampling()?;

            mcu_width = self.mcu_x;
            mcu_height = self.mcu_y;
        } else {
            // For non-interleaved images( (1*1) subsampling)
            // number of MCU's are the widths (+7 to account for paddings) divided bu 8.
            mcu_width = ((self.info.width + 7) / 8) as usize;
            mcu_height = ((self.info.height + 7) / 8) as usize;
        }
        if self.is_interleaved
            && self.input_colorspace.num_components() > 1
            && self.options.jpeg_get_out_colorspace().num_components() == 1
            && (self.sub_sample_ratio == SampleRatios::V
                || self.sub_sample_ratio == SampleRatios::HV)
        {
            // For a specific set of images, e.g interleaved,
            // when converting from YcbCr to grayscale, we need to
            // take into account mcu height since the MCU decoding needs to take
            // it into account for padding purposes and the post processor
            // parses two rows per mcu width.
            //
            // set coeff to be 2 to ensure that we increment two rows
            // for every mcu processed also
            mcu_height *= self.v_max;
            mcu_height /= self.h_max;
            self.coeff = 2;
        }

        if self.input_colorspace.num_components() > self.components.len() {
            let msg = format!(
                " Expected {} number of components but found {}",
                self.input_colorspace.num_components(),
                self.components.len()
            );
            return Err(DecodeErrors::Format(msg));
        }

        if self.input_colorspace == ColorSpace::Luma && self.is_interleaved {
            warn!("Grayscale image with down-sampled component, resetting component details");

            self.reset_params();

            mcu_width = ((self.info.width + 7) / 8) as usize;
            mcu_height = ((self.info.height + 7) / 8) as usize;
        }
        let width = usize::from(self.info.width);

        let padded_width = calculate_padded_width(width, self.sub_sample_ratio);

        let mut stream = BitStream::new();
        let mut tmp = [0_i32; DCT_BLOCK];

        let comp_len = self.components.len();

        for (pos, comp) in self.components.iter_mut().enumerate() {
            // Allocate only needed components.
            //
            // For special colorspaces i.e YCCK and CMYK, just allocate all of the needed
            // components.
            if min(
                self.options.jpeg_get_out_colorspace().num_components() - 1,
                pos
            ) == pos
                || comp_len == 4
            // Special colorspace
            {
                // allocate enough space to hold a whole MCU width
                // this means we should take into account sampling ratios
                // `*8` is because each MCU spans 8 widths.
                let len = comp.width_stride * comp.vertical_sample * 8;

                comp.needed = true;
                comp.raw_coeff = vec![0; len];
            } else {
                comp.needed = false;
            }
        }

        let mut pixels_written = 0;

        let is_hv = usize::from(self.is_interleaved);
        let upsampler_scratch_size = is_hv * self.components[0].width_stride;
        let mut upsampler_scratch_space = vec![0; upsampler_scratch_size];

        for i in 0..mcu_height {
            // Report if we have no more bytes
            // This may generate false negatives since we over-read bytes
            // hence that why 37 is chosen(we assume if we over-read more than 37 bytes, we have a problem)
            if stream.overread_by > 37
            // favourite number :)
            {
                if self.options.get_strict_mode() {
                    return Err(DecodeErrors::FormatStatic("Premature end of buffer"));
                };

                error!("Premature end of buffer");
                break;
            }
            // decode a whole MCU width,
            // this takes into account interleaved components.
            self.decode_mcu_width(mcu_width, &mut tmp, &mut stream)?;
            // process that width up until it's impossible
            self.post_process(
                pixels,
                i,
                mcu_height,
                width,
                padded_width,
                &mut pixels_written,
                &mut upsampler_scratch_space
            )?;
        }
        // it may happen that some images don't have the whole buffer
        // so we can't panic in case of that
        // assert_eq!(pixels_written, pixels.len());

        trace!("Finished decoding image");

        Ok(())
    }
    fn decode_mcu_width(
        &mut self, mcu_width: usize, tmp: &mut [i32; 64], stream: &mut BitStream
    ) -> Result<(), DecodeErrors> {
        for j in 0..mcu_width {
            // iterate over components
            for component in &mut self.components {
                let dc_table = self.dc_huffman_tables[component.dc_huff_table % MAX_COMPONENTS]
                    .as_ref()
                    .unwrap();

                let ac_table = self.ac_huffman_tables[component.ac_huff_table % MAX_COMPONENTS]
                    .as_ref()
                    .unwrap();

                let qt_table = &component.quantization_table;
                let channel = &mut component.raw_coeff;

                // If image is interleaved iterate over scan components,
                // otherwise if it-s non-interleaved, these routines iterate in
                // trivial scanline order(Y,Cb,Cr)
                for v_samp in 0..component.vertical_sample {
                    for h_samp in 0..component.horizontal_sample {
                        // Fill the array with zeroes, decode_mcu_block expects
                        // a zero based array.
                        tmp.fill(0);

                        stream.decode_mcu_block(
                            &mut self.stream,
                            dc_table,
                            ac_table,
                            qt_table,
                            tmp,
                            &mut component.dc_pred
                        )?;

                        if component.needed {
                            let idct_position = {
                                // derived from stb and rewritten for my tastes
                                let c2 = v_samp * 8;
                                let c3 = ((j * component.horizontal_sample) + h_samp) * 8;

                                component.width_stride * c2 + c3
                            };

                            let idct_pos = channel.get_mut(idct_position..).unwrap();
                            //  call idct.
                            (self.idct_func)(tmp, idct_pos, component.width_stride);
                        }
                    }
                }
            }
            self.todo = self.todo.saturating_sub(1);
            // After all interleaved components, that's an MCU
            // handle stream markers
            //
            // In some corrupt images, it may occur that header markers occur in the stream.
            // The spec EXPLICITLY FORBIDS this, specifically, in
            // routine F.2.2.5  it says
            // `The only valid marker which may occur within the Huffman coded data is the RSTm marker.`
            //
            // But libjpeg-turbo allows it because of some weird reason. so I'll also
            // allow it because of some weird reason.
            if let Some(m) = stream.marker {
                if m == Marker::EOI {
                    // acknowledge and ignore EOI marker.
                    stream.marker.take();
                    trace!("Found EOI marker");
                } else if let Marker::RST(_) = m {
                    if self.todo == 0 {
                        self.handle_rst(stream)?;
                    }
                } else {
                    if self.options.get_strict_mode() {
                        return Err(DecodeErrors::Format(format!(
                            "Marker {m:?} found where not expected"
                        )));
                    }
                    error!(
                        "Marker `{:?}` Found within Huffman Stream, possibly corrupt jpeg",
                        m
                    );

                    self.parse_marker_inner(m)?;
                }
            }
        }
        Ok(())
    }
    // handle RST markers.
    // No-op if not using restarts
    // this routine is shared with mcu_prog
    #[cold]
    pub(crate) fn handle_rst(&mut self, stream: &mut BitStream) -> Result<(), DecodeErrors> {
        self.todo = self.restart_interval;

        if let Some(marker) = stream.marker {
            // Found a marker
            // Read stream and see what marker is stored there
            match marker {
                Marker::RST(_) => {
                    // reset stream
                    stream.reset();
                    // Initialize dc predictions to zero for all components
                    self.components.iter_mut().for_each(|x| x.dc_pred = 0);
                    // Start iterating again. from position.
                }
                Marker::EOI => {
                    // silent pass
                }
                _ => {
                    return Err(DecodeErrors::MCUError(format!(
                        "Marker {marker:?} found in bitstream, possibly corrupt jpeg"
                    )));
                }
            }
        }
        Ok(())
    }
    #[allow(clippy::too_many_lines, clippy::too_many_arguments)]
    pub(crate) fn post_process(
        &mut self, pixels: &mut [u8], i: usize, mcu_height: usize, width: usize,
        padded_width: usize, pixels_written: &mut usize, upsampler_scratch_space: &mut [i16]
    ) -> Result<(), DecodeErrors> {
        let out_colorspace_components = self.options.jpeg_get_out_colorspace().num_components();

        let mut px = *pixels_written;
        // indicates whether image is vertically up-sampled
        let is_vertically_sampled = self
            .components
            .iter()
            .any(|c| c.sample_ratio == SampleRatios::HV || c.sample_ratio == SampleRatios::V);

        let mut comp_len = self.components.len();

        // If we are moving from YCbCr-> Luma, we do not allocate storage for other components, so we
        // will panic when we are trying to read samples, so for that case,
        // hardcode it so that we  don't panic when doing
        //   *samp = &samples[j][pos * padded_width..(pos + 1) * padded_width]
        if out_colorspace_components < comp_len && self.options.jpeg_get_out_colorspace() == Luma {
            comp_len = out_colorspace_components;
        }
        let mut color_conv_function =
            |num_iters: usize, samples: [&[i16]; 4]| -> Result<(), DecodeErrors> {
                for (pos, output) in pixels[px..]
                    .chunks_exact_mut(width * out_colorspace_components)
                    .take(num_iters)
                    .enumerate()
                {
                    let mut raw_samples: [&[i16]; 4] = [&[], &[], &[], &[]];

                    // iterate over each line, since color-convert needs only
                    // one line
                    for (j, samp) in raw_samples.iter_mut().enumerate().take(comp_len) {
                        *samp = &samples[j][pos * padded_width..(pos + 1) * padded_width]
                    }
                    color_convert(
                        &raw_samples,
                        self.color_convert_16,
                        self.input_colorspace,
                        self.options.jpeg_get_out_colorspace(),
                        output,
                        width,
                        padded_width
                    )?;
                    px += width * out_colorspace_components;
                }
                Ok(())
            };

        let comps = &mut self.components[..];

        if self.is_interleaved && self.options.jpeg_get_out_colorspace() != ColorSpace::Luma {
            {
                // duplicated so that we can check that samples match
                // Fixes bug https://github.com/etemesi254/zune-image/issues/151
                let mut samples: [&[i16]; 4] = [&[], &[], &[], &[]];

                for (samp, component) in samples.iter_mut().zip(comps.iter()) {
                    *samp = if component.sample_ratio == SampleRatios::None {
                        &component.raw_coeff
                    } else {
                        &component.upsample_dest
                    };
                }
            }
            for comp in comps.iter_mut() {
                upsample(
                    comp,
                    mcu_height,
                    i,
                    upsampler_scratch_space,
                    is_vertically_sampled
                );
            }

            if is_vertically_sampled {
                if i > 0 {
                    // write the last line, it wasn't  up-sampled as we didn't have row_down
                    // yet
                    let mut samples: [&[i16]; 4] = [&[], &[], &[], &[]];

                    for (samp, component) in samples.iter_mut().zip(comps.iter()) {
                        *samp = &component.first_row_upsample_dest;
                    }

                    // ensure length matches for all samples
                    let first_len = samples[0].len();
                    for samp in samples.iter().take(comp_len) {
                        assert_eq!(first_len, samp.len());
                    }
                    let num_iters = self.coeff * self.v_max;

                    color_conv_function(num_iters, samples)?;
                }

                // After up-sampling the last row, save  any row that can be used for
                // a later up-sampling,
                //
                // E.g the Y sample is not sampled but we haven't finished upsampling the last row of
                // the previous mcu, since we don't have the down row, so save it
                for component in comps.iter_mut() {
                    if component.sample_ratio != SampleRatios::H {
                        // We don't care about H sampling factors, since it's copied in the workers function

                        // copy last row to be used for the  next color conversion
                        let size = component.vertical_sample
                            * component.width_stride
                            * component.sample_ratio.sample();

                        let last_bytes =
                            component.raw_coeff.rchunks_exact_mut(size).next().unwrap();

                        component
                            .first_row_upsample_dest
                            .copy_from_slice(last_bytes);
                    }
                }
            }

            let mut samples: [&[i16]; 4] = [&[], &[], &[], &[]];

            for (samp, component) in samples.iter_mut().zip(comps.iter()) {
                *samp = if component.sample_ratio == SampleRatios::None {
                    &component.raw_coeff
                } else {
                    &component.upsample_dest
                };
            }

            // we either do 7 or 8 MCU's depending on the state, this only applies to
            // vertically sampled images
            //
            // for rows up until the last MCU, we do not upsample the last stride of the MCU
            // which means that the number of iterations should take that into account is one less the
            // up-sampled size
            //
            // For the last MCU, we upsample the last stride, meaning that if we hit the last MCU, we
            // should sample full raw coeffs
            let is_last_considered = is_vertically_sampled && (i != mcu_height.saturating_sub(1));

            let num_iters = (8 - usize::from(is_last_considered)) * self.coeff * self.v_max;

            color_conv_function(num_iters, samples)?;
        } else {
            let mut channels_ref: [&[i16]; MAX_COMPONENTS] = [&[]; MAX_COMPONENTS];

            self.components
                .iter()
                .enumerate()
                .for_each(|(pos, x)| channels_ref[pos] = &x.raw_coeff);

            color_conv_function(8 * self.coeff, channels_ref)?;
        }

        *pixels_written = px;
        Ok(())
    }
}