skrifa/outline/glyf/hint/
math.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! Fixed point math helpers that are specific to TrueType hinting.
//!
//! These are implemented in terms of font-types types when possible. It
//! likely makes sense to use more strongly typed fixed point values
//! in the future.

use read_fonts::types::{Fixed, Point};

pub fn floor(x: i32) -> i32 {
    x & !63
}

pub fn round(x: i32) -> i32 {
    floor(x + 32)
}

pub fn ceil(x: i32) -> i32 {
    floor(x + 63)
}

fn floor_pad(x: i32, n: i32) -> i32 {
    x & !(n - 1)
}

pub fn round_pad(x: i32, n: i32) -> i32 {
    floor_pad(x + n / 2, n)
}

#[inline(always)]
pub fn mul(a: i32, b: i32) -> i32 {
    (Fixed::from_bits(a) * Fixed::from_bits(b)).to_bits()
}

pub fn div(a: i32, b: i32) -> i32 {
    (Fixed::from_bits(a) / Fixed::from_bits(b)).to_bits()
}

/// Fixed point multiply and divide: a * b / c
pub fn mul_div(a: i32, b: i32, c: i32) -> i32 {
    Fixed::from_bits(a)
        .mul_div(Fixed::from_bits(b), Fixed::from_bits(c))
        .to_bits()
}

/// Fixed point multiply and divide without rounding: a * b / c
///
/// Based on <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/base/ftcalc.c#L200>
pub fn mul_div_no_round(mut a: i32, mut b: i32, mut c: i32) -> i32 {
    let mut s = 1;
    if a < 0 {
        a = -a;
        s = -1;
    }
    if b < 0 {
        b = -b;
        s = -s;
    }
    if c < 0 {
        c = -c;
        s = -s;
    }
    let d = if c > 0 {
        ((a as i64) * (b as i64)) / c as i64
    } else {
        0x7FFFFFFF
    };
    if s < 0 {
        -(d as i32)
    } else {
        d as i32
    }
}

/// Multiplication for 2.14 fixed point.
///
/// Based on <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L1234>
pub fn mul14(a: i32, b: i32) -> i32 {
    let mut v = a as i64 * b as i64;
    v += 0x2000 + (v >> 63);
    (v >> 14) as i32
}

/// Normalize a vector in 2.14 fixed point.
///
/// Direct port of <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/base/ftcalc.c#L800>
pub fn normalize14(x: i32, y: i32) -> Point<i32> {
    use core::num::Wrapping;
    let (mut sx, mut sy) = (Wrapping(1i32), Wrapping(1i32));
    let mut ux = Wrapping(x as u32);
    let mut uy = Wrapping(y as u32);
    const ZERO: Wrapping<u32> = Wrapping(0);
    let mut result = Point::default();
    if x < 0 {
        ux = ZERO - ux;
        sx = -sx;
    }
    if y < 0 {
        uy = ZERO - uy;
        sy = -sy;
    }
    if ux == ZERO {
        result.x = x / 4;
        if uy.0 > 0 {
            result.y = (sy * Wrapping(0x10000) / Wrapping(4)).0;
        }
        return result;
    }
    if uy == ZERO {
        result.y = y / 4;
        if ux.0 > 0 {
            result.x = (sx * Wrapping(0x10000) / Wrapping(4)).0;
        }
        return result;
    }
    let mut len = if ux > uy {
        ux + (uy >> 1)
    } else {
        uy + (ux >> 1)
    };
    let mut shift = Wrapping(len.0.leading_zeros() as i32);
    shift -= Wrapping(15)
        + if len >= (Wrapping(0xAAAAAAAAu32) >> shift.0 as usize) {
            Wrapping(1)
        } else {
            Wrapping(0)
        };
    if shift.0 > 0 {
        let s = shift.0 as usize;
        ux <<= s;
        uy <<= s;
        len = if ux > uy {
            ux + (uy >> 1)
        } else {
            uy + (ux >> 1)
        };
    } else {
        let s = -shift.0 as usize;
        ux >>= s;
        uy >>= s;
        len >>= s;
    }
    let mut b = Wrapping(0x10000) - Wrapping(len.0 as i32);
    let x = Wrapping(ux.0 as i32);
    let y = Wrapping(uy.0 as i32);
    let mut z;
    let mut u;
    let mut v;
    loop {
        u = Wrapping((x + ((x * b) >> 16)).0 as u32);
        v = Wrapping((y + ((y * b) >> 16)).0 as u32);
        z = Wrapping(-((u * u + v * v).0 as i32)) / Wrapping(0x200);
        z = z * ((Wrapping(0x10000) + b) >> 8) / Wrapping(0x10000);
        b += z;
        if z <= Wrapping(0) {
            break;
        }
    }
    Point::new(
        (Wrapping(u.0 as i32) * sx / Wrapping(4)).0,
        (Wrapping(v.0 as i32) * sy / Wrapping(4)).0,
    )
}

#[cfg(test)]
mod tests {
    use raw::types::{F2Dot14, Fixed};

    /// Tolerance value for floating point sanity checks.
    /// Tests with large sets of values show this is the best we can
    /// expect from the fixed point implementations.
    const FLOAT_TOLERANCE: f32 = 1e-4;

    #[test]
    fn mul_div_no_round() {
        let cases = [
            // computed with FT_MulDiv_NoRound():
            // ((a, b, c), result) where result = a * b / c
            ((-326, -11474, 9942), 376),
            ((-6781, 13948, 11973), -7899),
            ((3517, 15622, 8075), 6804),
            ((-6127, 15026, 2276), -40450),
            ((11257, 14828, 2542), 65664),
            ((-12797, -16280, -9086), -22929),
            ((-7994, -3340, 9583), 2786),
            ((-16101, -13780, -1427), -155481),
            ((10304, -16331, 15480), -10870),
            ((-15879, 11912, -4650), 40677),
            ((-5015, 6382, -15977), 2003),
            ((2080, -11930, -15457), 1605),
            ((-11071, 13350, 16138), -9158),
            ((16084, -13564, -770), 283329),
            ((14304, -10377, -21), 7068219),
            ((-14056, -8853, -5488), -22674),
            ((-10319, 14797, 8554), -17850),
            ((-7820, 6826, 10555), -5057),
            ((7257, 15928, 8159), 14167),
            ((14929, 11579, -13204), -13091),
            ((2808, 12070, -14697), -2306),
            ((-13818, 8544, -1649), 71595),
            ((3265, 7325, -1373), -17418),
            ((14832, 10586, -6440), -24380),
            ((4123, 8274, -2022), -16871),
            ((4645, -4149, -7242), 2661),
            ((-3891, 8366, 5771), -5640),
            ((-15447, -3428, -9335), -5672),
            ((13670, -14311, -11122), 17589),
            ((12590, -6592, 13159), -6306),
            ((-8369, -10193, 5051), 16888),
            ((-9539, 5167, 2595), -18993),
        ];
        for ((a, b, c), expected_result) in cases {
            let result = super::mul_div_no_round(a, b, c);
            assert_eq!(result, expected_result);
            let fa = Fixed::from_bits(a as _).to_f32();
            let fb = Fixed::from_bits(b as _).to_f32();
            let fc = Fixed::from_bits(c as _).to_f32();
            let fresult = fa * fb / fc;
            let fexpected_result = Fixed::from_bits(expected_result as _).to_f32();
            assert!((fresult - fexpected_result).abs() < FLOAT_TOLERANCE);
        }
    }

    #[test]
    fn mul14() {
        let cases = [
            // computed with TT_MulFix14():
            // ((a, b), result) where result = a * b
            ((6236, -10078), -3836),
            ((-6803, -5405), 2244),
            ((-10006, -12852), 7849),
            ((-15434, -4102), 3864),
            ((-8681, 9269), -4911),
            ((9449, -9130), -5265),
            ((12643, 2161), 1668),
            ((-6115, 9284), -3465),
            ((316, 3390), 65),
            ((15077, -12901), -11872),
            ((-12182, 11613), -8635),
            ((-7213, 8246), -3630),
            ((13482, 8096), 6662),
            ((5690, 15016), 5215),
            ((-5991, 12613), -4612),
            ((13112, -8404), -6726),
            ((13524, 6786), 5601),
            ((7156, 3291), 1437),
            ((-2978, 353), -64),
            ((-1755, 14626), -1567),
            ((14402, 7886), 6932),
            ((7124, 15730), 6840),
            ((-12679, 14830), -11476),
            ((-9374, -12999), 7437),
            ((12301, -4685), -3517),
            ((5324, 2066), 671),
            ((6783, -4946), -2048),
            ((12078, -968), -714),
            ((-10137, 14116), -8734),
            ((-13946, 11585), -9861),
            ((-678, -2205), 91),
            ((-2629, -3319), 533),
        ];
        for ((a, b), expected_result) in cases {
            let result = super::mul14(a, b);
            assert_eq!(result, expected_result);
            let fa = F2Dot14::from_bits(a as _).to_f32();
            let fb = F2Dot14::from_bits(b as _).to_f32();
            let fresult = fa * fb;
            let fexpected_result = F2Dot14::from_bits(expected_result as _).to_f32();
            assert!((fresult - fexpected_result).abs() < FLOAT_TOLERANCE);
        }
    }

    #[test]
    fn normalize14() {
        let cases = [
            // computed with FT_Vector_NormLen():
            // (input vector, expected normalized vector)
            ((-13660, 11807), (-12395, 10713)),
            ((-10763, 9293), (-12401, 10707)),
            ((-3673, 673), (-16115, 2952)),
            ((15886, -2964), (16106, -3005)),
            ((15442, -2871), (16108, -2994)),
            ((-6308, 5744), (-12114, 11031)),
            ((9410, -10415), (10983, -12156)),
            ((-10620, -14856), (-9528, -13328)),
            ((-9372, 12029), (-10069, 12924)),
            ((-1272, -1261), (-11635, -11534)),
            ((-7076, -5517), (-12920, -10074)),
            ((-10297, 179), (-16381, 284)),
            ((9256, -13235), (9389, -13426)),
            ((5315, -12449), (6433, -15068)),
            ((8064, 15213), (7673, 14476)),
            ((-8665, 41), (-16383, 77)),
            ((-3455, -4720), (-9677, -13220)),
            ((13449, -5152), (15299, -5861)),
            ((-15605, 8230), (-14492, 7643)),
            ((4716, -13690), (5336, -15490)),
            ((12904, -11422), (12268, -10859)),
            ((2825, -6396), (6619, -14987)),
            ((4654, 15245), (4783, 15670)),
            ((-14769, 15133), (-11443, 11725)),
            ((-8090, -9057), (-10914, -12219)),
            ((-472, 1953), (-3848, 15925)),
            ((-12563, 1040), (-16328, 1351)),
            ((-7938, 15587), (-7435, 14599)),
            ((-9701, 5356), (-14343, 7919)),
            ((-642, -14484), (-725, -16367)),
            ((12963, -9690), (13123, -9809)),
            ((7067, 5361), (13053, 9902)),
            ((0x4000, 0), (0x4000, 0)),
            ((0, 0x4000), (0, 0x4000)),
            ((-0x4000, 0), (-0x4000, 0)),
            ((0, -0x4000), (0, -0x4000)),
        ];
        for ((x, y), expected) in cases {
            let n = super::normalize14(x, y);
            assert_eq!((n.x, n.y), expected);
            // Ensure the length of the vector is nearly 1.0
            let fx = F2Dot14::from_bits(n.x as _).to_f32();
            let fy = F2Dot14::from_bits(n.y as _).to_f32();
            let flen = (fx * fx + fy * fy).sqrt();
            assert!((flen - 1.0).abs() <= FLOAT_TOLERANCE);
        }
    }
}