aho_corasick/util/alphabet.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
use crate::util::int::Usize;
/// A representation of byte oriented equivalence classes.
///
/// This is used in finite state machines to reduce the size of the transition
/// table. This can have a particularly large impact not only on the total size
/// of an FSM, but also on FSM build times because it reduces the number of
/// transitions that need to be visited/set.
#[derive(Clone, Copy)]
pub(crate) struct ByteClasses([u8; 256]);
impl ByteClasses {
/// Creates a new set of equivalence classes where all bytes are mapped to
/// the same class.
pub(crate) fn empty() -> ByteClasses {
ByteClasses([0; 256])
}
/// Creates a new set of equivalence classes where each byte belongs to
/// its own equivalence class.
pub(crate) fn singletons() -> ByteClasses {
let mut classes = ByteClasses::empty();
for b in 0..=255 {
classes.set(b, b);
}
classes
}
/// Set the equivalence class for the given byte.
#[inline]
pub(crate) fn set(&mut self, byte: u8, class: u8) {
self.0[usize::from(byte)] = class;
}
/// Get the equivalence class for the given byte.
#[inline]
pub(crate) fn get(&self, byte: u8) -> u8 {
self.0[usize::from(byte)]
}
/// Return the total number of elements in the alphabet represented by
/// these equivalence classes. Equivalently, this returns the total number
/// of equivalence classes.
#[inline]
pub(crate) fn alphabet_len(&self) -> usize {
// Add one since the number of equivalence classes is one bigger than
// the last one.
usize::from(self.0[255]) + 1
}
/// Returns the stride, as a base-2 exponent, required for these
/// equivalence classes.
///
/// The stride is always the smallest power of 2 that is greater than or
/// equal to the alphabet length. This is done so that converting between
/// state IDs and indices can be done with shifts alone, which is much
/// faster than integer division. The "stride2" is the exponent. i.e.,
/// `2^stride2 = stride`.
pub(crate) fn stride2(&self) -> usize {
let zeros = self.alphabet_len().next_power_of_two().trailing_zeros();
usize::try_from(zeros).unwrap()
}
/// Returns the stride for these equivalence classes, which corresponds
/// to the smallest power of 2 greater than or equal to the number of
/// equivalence classes.
pub(crate) fn stride(&self) -> usize {
1 << self.stride2()
}
/// Returns true if and only if every byte in this class maps to its own
/// equivalence class. Equivalently, there are 257 equivalence classes
/// and each class contains exactly one byte (plus the special EOI class).
#[inline]
pub(crate) fn is_singleton(&self) -> bool {
self.alphabet_len() == 256
}
/// Returns an iterator over all equivalence classes in this set.
pub(crate) fn iter(&self) -> ByteClassIter {
ByteClassIter { it: 0..self.alphabet_len() }
}
/// Returns an iterator of the bytes in the given equivalence class.
pub(crate) fn elements(&self, class: u8) -> ByteClassElements {
ByteClassElements { classes: self, class, bytes: 0..=255 }
}
/// Returns an iterator of byte ranges in the given equivalence class.
///
/// That is, a sequence of contiguous ranges are returned. Typically, every
/// class maps to a single contiguous range.
fn element_ranges(&self, class: u8) -> ByteClassElementRanges {
ByteClassElementRanges { elements: self.elements(class), range: None }
}
}
impl core::fmt::Debug for ByteClasses {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if self.is_singleton() {
write!(f, "ByteClasses(<one-class-per-byte>)")
} else {
write!(f, "ByteClasses(")?;
for (i, class) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?} => [", class)?;
for (start, end) in self.element_ranges(class) {
if start == end {
write!(f, "{:?}", start)?;
} else {
write!(f, "{:?}-{:?}", start, end)?;
}
}
write!(f, "]")?;
}
write!(f, ")")
}
}
}
/// An iterator over each equivalence class.
#[derive(Debug)]
pub(crate) struct ByteClassIter {
it: core::ops::Range<usize>,
}
impl Iterator for ByteClassIter {
type Item = u8;
fn next(&mut self) -> Option<u8> {
self.it.next().map(|class| class.as_u8())
}
}
/// An iterator over all elements in a specific equivalence class.
#[derive(Debug)]
pub(crate) struct ByteClassElements<'a> {
classes: &'a ByteClasses,
class: u8,
bytes: core::ops::RangeInclusive<u8>,
}
impl<'a> Iterator for ByteClassElements<'a> {
type Item = u8;
fn next(&mut self) -> Option<u8> {
while let Some(byte) = self.bytes.next() {
if self.class == self.classes.get(byte) {
return Some(byte);
}
}
None
}
}
/// An iterator over all elements in an equivalence class expressed as a
/// sequence of contiguous ranges.
#[derive(Debug)]
pub(crate) struct ByteClassElementRanges<'a> {
elements: ByteClassElements<'a>,
range: Option<(u8, u8)>,
}
impl<'a> Iterator for ByteClassElementRanges<'a> {
type Item = (u8, u8);
fn next(&mut self) -> Option<(u8, u8)> {
loop {
let element = match self.elements.next() {
None => return self.range.take(),
Some(element) => element,
};
match self.range.take() {
None => {
self.range = Some((element, element));
}
Some((start, end)) => {
if usize::from(end) + 1 != usize::from(element) {
self.range = Some((element, element));
return Some((start, end));
}
self.range = Some((start, element));
}
}
}
}
}
/// A partitioning of bytes into equivalence classes.
///
/// A byte class set keeps track of an *approximation* of equivalence classes
/// of bytes during NFA construction. That is, every byte in an equivalence
/// class cannot discriminate between a match and a non-match.
///
/// Note that this may not compute the minimal set of equivalence classes.
/// Basically, any byte in a pattern given to the noncontiguous NFA builder
/// will automatically be treated as its own equivalence class. All other
/// bytes---any byte not in any pattern---will be treated as their own
/// equivalence classes. In theory, all bytes not in any pattern should
/// be part of a single equivalence class, but in practice, we only treat
/// contiguous ranges of bytes as an equivalence class. So the number of
/// classes computed may be bigger than necessary. This usually doesn't make
/// much of a difference, and keeps the implementation simple.
#[derive(Clone, Debug)]
pub(crate) struct ByteClassSet(ByteSet);
impl Default for ByteClassSet {
fn default() -> ByteClassSet {
ByteClassSet::empty()
}
}
impl ByteClassSet {
/// Create a new set of byte classes where all bytes are part of the same
/// equivalence class.
pub(crate) fn empty() -> Self {
ByteClassSet(ByteSet::empty())
}
/// Indicate the the range of byte given (inclusive) can discriminate a
/// match between it and all other bytes outside of the range.
pub(crate) fn set_range(&mut self, start: u8, end: u8) {
debug_assert!(start <= end);
if start > 0 {
self.0.add(start - 1);
}
self.0.add(end);
}
/// Convert this boolean set to a map that maps all byte values to their
/// corresponding equivalence class. The last mapping indicates the largest
/// equivalence class identifier (which is never bigger than 255).
pub(crate) fn byte_classes(&self) -> ByteClasses {
let mut classes = ByteClasses::empty();
let mut class = 0u8;
let mut b = 0u8;
loop {
classes.set(b, class);
if b == 255 {
break;
}
if self.0.contains(b) {
class = class.checked_add(1).unwrap();
}
b = b.checked_add(1).unwrap();
}
classes
}
}
/// A simple set of bytes that is reasonably cheap to copy and allocation free.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub(crate) struct ByteSet {
bits: BitSet,
}
/// The representation of a byte set. Split out so that we can define a
/// convenient Debug impl for it while keeping "ByteSet" in the output.
#[derive(Clone, Copy, Default, Eq, PartialEq)]
struct BitSet([u128; 2]);
impl ByteSet {
/// Create an empty set of bytes.
pub(crate) fn empty() -> ByteSet {
ByteSet { bits: BitSet([0; 2]) }
}
/// Add a byte to this set.
///
/// If the given byte already belongs to this set, then this is a no-op.
pub(crate) fn add(&mut self, byte: u8) {
let bucket = byte / 128;
let bit = byte % 128;
self.bits.0[usize::from(bucket)] |= 1 << bit;
}
/// Return true if and only if the given byte is in this set.
pub(crate) fn contains(&self, byte: u8) -> bool {
let bucket = byte / 128;
let bit = byte % 128;
self.bits.0[usize::from(bucket)] & (1 << bit) > 0
}
}
impl core::fmt::Debug for BitSet {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let mut fmtd = f.debug_set();
for b in 0u8..=255 {
if (ByteSet { bits: *self }).contains(b) {
fmtd.entry(&b);
}
}
fmtd.finish()
}
}
#[cfg(test)]
mod tests {
use alloc::{vec, vec::Vec};
use super::*;
#[test]
fn byte_classes() {
let mut set = ByteClassSet::empty();
set.set_range(b'a', b'z');
let classes = set.byte_classes();
assert_eq!(classes.get(0), 0);
assert_eq!(classes.get(1), 0);
assert_eq!(classes.get(2), 0);
assert_eq!(classes.get(b'a' - 1), 0);
assert_eq!(classes.get(b'a'), 1);
assert_eq!(classes.get(b'm'), 1);
assert_eq!(classes.get(b'z'), 1);
assert_eq!(classes.get(b'z' + 1), 2);
assert_eq!(classes.get(254), 2);
assert_eq!(classes.get(255), 2);
let mut set = ByteClassSet::empty();
set.set_range(0, 2);
set.set_range(4, 6);
let classes = set.byte_classes();
assert_eq!(classes.get(0), 0);
assert_eq!(classes.get(1), 0);
assert_eq!(classes.get(2), 0);
assert_eq!(classes.get(3), 1);
assert_eq!(classes.get(4), 2);
assert_eq!(classes.get(5), 2);
assert_eq!(classes.get(6), 2);
assert_eq!(classes.get(7), 3);
assert_eq!(classes.get(255), 3);
}
#[test]
fn full_byte_classes() {
let mut set = ByteClassSet::empty();
for b in 0u8..=255 {
set.set_range(b, b);
}
assert_eq!(set.byte_classes().alphabet_len(), 256);
}
#[test]
fn elements_typical() {
let mut set = ByteClassSet::empty();
set.set_range(b'b', b'd');
set.set_range(b'g', b'm');
set.set_range(b'z', b'z');
let classes = set.byte_classes();
// class 0: \x00-a
// class 1: b-d
// class 2: e-f
// class 3: g-m
// class 4: n-y
// class 5: z-z
// class 6: \x7B-\xFF
assert_eq!(classes.alphabet_len(), 7);
let elements = classes.elements(0).collect::<Vec<_>>();
assert_eq!(elements.len(), 98);
assert_eq!(elements[0], b'\x00');
assert_eq!(elements[97], b'a');
let elements = classes.elements(1).collect::<Vec<_>>();
assert_eq!(elements, vec![b'b', b'c', b'd'],);
let elements = classes.elements(2).collect::<Vec<_>>();
assert_eq!(elements, vec![b'e', b'f'],);
let elements = classes.elements(3).collect::<Vec<_>>();
assert_eq!(elements, vec![b'g', b'h', b'i', b'j', b'k', b'l', b'm',],);
let elements = classes.elements(4).collect::<Vec<_>>();
assert_eq!(elements.len(), 12);
assert_eq!(elements[0], b'n');
assert_eq!(elements[11], b'y');
let elements = classes.elements(5).collect::<Vec<_>>();
assert_eq!(elements, vec![b'z']);
let elements = classes.elements(6).collect::<Vec<_>>();
assert_eq!(elements.len(), 133);
assert_eq!(elements[0], b'\x7B');
assert_eq!(elements[132], b'\xFF');
}
#[test]
fn elements_singletons() {
let classes = ByteClasses::singletons();
assert_eq!(classes.alphabet_len(), 256);
let elements = classes.elements(b'a').collect::<Vec<_>>();
assert_eq!(elements, vec![b'a']);
}
#[test]
fn elements_empty() {
let classes = ByteClasses::empty();
assert_eq!(classes.alphabet_len(), 1);
let elements = classes.elements(0).collect::<Vec<_>>();
assert_eq!(elements.len(), 256);
assert_eq!(elements[0], b'\x00');
assert_eq!(elements[255], b'\xFF');
}
}