1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#![deny(rust_2018_idioms)]
#![doc(
    html_logo_url = "https://storage.googleapis.com/fdo-gitlab-uploads/project/avatar/3213/zbus-logomark.png"
)]
#![doc = include_str!("../README.md")]
#![doc(test(attr(
    warn(unused),
    deny(warnings),
    // W/o this, we seem to get some bogus warning about `extern crate zbus`.
    allow(unused_extern_crates),
)))]

use proc_macro::TokenStream;
use syn::DeriveInput;

mod dict;
mod r#type;
mod utils;
mod value;

/// Derive macro to add [`Type`] implementation to structs and enums.
///
/// # Examples
///
/// For structs it works just like serde's [`Serialize`] and [`Deserialize`] macros:
///
/// ```
/// use zvariant::{EncodingContext, from_slice, to_bytes, Type};
/// use serde::{Deserialize, Serialize};
/// use byteorder::LE;
///
/// #[derive(Deserialize, Serialize, Type, PartialEq, Debug)]
/// struct Struct<'s> {
///     field1: u16,
///     field2: i64,
///     field3: &'s str,
/// }
///
/// assert_eq!(Struct::signature(), "(qxs)");
/// let s = Struct {
///     field1: 42,
///     field2: i64::max_value(),
///     field3: "hello",
/// };
/// let ctxt = EncodingContext::<LE>::new_dbus(0);
/// let encoded = to_bytes(ctxt, &s).unwrap();
/// let decoded: Struct = from_slice(&encoded, ctxt).unwrap();
/// assert_eq!(decoded, s);
/// ```
///
/// Same with enum, except that all variants of the enum must have the same number and types of
/// fields (if any). If you want the encoding size of the (unit-type) enum to be dictated by
/// `repr` attribute (like in the example below), you'll also need [serde_repr] crate.
///
/// ```
/// use zvariant::{EncodingContext, from_slice, to_bytes, Type};
/// use serde::{Deserialize, Serialize};
/// use serde_repr::{Deserialize_repr, Serialize_repr};
/// use byteorder::LE;
///
/// #[repr(u8)]
/// #[derive(Deserialize_repr, Serialize_repr, Type, Debug, PartialEq)]
/// enum Enum {
///     Variant1,
///     Variant2,
/// }
/// assert_eq!(Enum::signature(), u8::signature());
/// let ctxt = EncodingContext::<LE>::new_dbus(0);
/// let encoded = to_bytes(ctxt, &Enum::Variant2).unwrap();
/// let decoded: Enum = from_slice(&encoded, ctxt).unwrap();
/// assert_eq!(decoded, Enum::Variant2);
///
/// #[repr(i64)]
/// #[derive(Deserialize_repr, Serialize_repr, Type)]
/// enum Enum2 {
///     Variant1,
///     Variant2,
/// }
/// assert_eq!(Enum2::signature(), i64::signature());
///
/// // w/o repr attribute, u32 representation is chosen
/// #[derive(Deserialize, Serialize, Type)]
/// enum NoReprEnum {
///     Variant1,
///     Variant2,
/// }
/// assert_eq!(NoReprEnum::signature(), u32::signature());
///
/// // Not-unit enums are represented as a structure, with the first field being a u32 denoting the
/// // variant and the second as the actual value.
/// #[derive(Deserialize, Serialize, Type)]
/// enum NewType {
///     Variant1(f64),
///     Variant2(f64),
/// }
/// assert_eq!(NewType::signature(), "(ud)");
///
/// #[derive(Deserialize, Serialize, Type)]
/// enum StructFields {
///     Variant1(u16, i64, &'static str),
///     Variant2 { field1: u16, field2: i64, field3: &'static str },
/// }
/// assert_eq!(StructFields::signature(), "(u(qxs))");
/// ```
///
/// # Custom signatures
///
/// There are times when you'd find yourself wanting to specify a hardcoded signature yourself for
/// the type. The `signature` attribute exists for this purpose. A typical use case is when you'd
/// need to encode your type as a dictionary (signature `a{sv}`) type. For convenience, `dict` is
/// an alias for `a{sv}`. Here is an example:
///
/// ```
/// use zvariant::{SerializeDict, DeserializeDict, EncodingContext, from_slice, to_bytes, Type};
/// use byteorder::LE;
///
/// #[derive(DeserializeDict, SerializeDict, Type, PartialEq, Debug)]
/// // `#[zvariant(signature = "a{sv}")]` would be the same.
/// #[zvariant(signature = "dict")]
/// struct Struct {
///     field1: u16,
///     field2: i64,
///     field3: String,
/// }
///
/// assert_eq!(Struct::signature(), "a{sv}");
/// let s = Struct {
///     field1: 42,
///     field2: i64::max_value(),
///     field3: "hello".to_string(),
/// };
/// let ctxt = EncodingContext::<LE>::new_dbus(0);
/// let encoded = to_bytes(ctxt, &s).unwrap();
/// let decoded: Struct = from_slice(&encoded, ctxt).unwrap();
/// assert_eq!(decoded, s);
/// ```
///
/// Another common use for custom signatures is (de)serialization of unit enums as strings:
///
/// ```
/// use zvariant::{EncodingContext, from_slice, to_bytes, Type};
/// use serde::{Deserialize, Serialize};
/// use byteorder::LE;
///
/// #[derive(Deserialize, Serialize, Type, PartialEq, Debug)]
/// #[zvariant(signature = "s")]
/// enum StrEnum {
///     Variant1,
///     Variant2,
///     Variant3,
/// }
///
/// assert_eq!(StrEnum::signature(), "s");
/// let ctxt = EncodingContext::<LE>::new_dbus(0);
/// let encoded = to_bytes(ctxt, &StrEnum::Variant2).unwrap();
/// assert_eq!(encoded.len(), 13);
/// let decoded: StrEnum = from_slice(&encoded, ctxt).unwrap();
/// assert_eq!(decoded, StrEnum::Variant2);
/// ```
///
/// [`Type`]: https://docs.rs/zvariant/2.10.0/zvariant/trait.Type.html
/// [`Serialize`]: https://docs.serde.rs/serde/trait.Serialize.html
/// [`Deserialize`]: https://docs.serde.rs/serde/de/trait.Deserialize.html
/// [serde_repr]: https://crates.io/crates/serde_repr
#[proc_macro_derive(Type, attributes(zvariant))]
pub fn type_macro_derive(input: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(input).unwrap();
    r#type::expand_derive(ast)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

/// Derive macro to add [`Type`] implementation to structs serialized as `a{sv}` type.
///
/// [`Type`]: ../zvariant/trait.Type.html
#[proc_macro_derive(TypeDict)]
#[deprecated(
    since = "3.1.0",
    note = "Please use `Type` macro with `#[zvariant(signature = \"dict\")]` attribute instead."
)]
pub fn type_dict_macro_derive(input: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(input).unwrap();
    dict::expand_type_derive(ast)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

/// Adds [`Serialize`] implementation to structs to be serialized as `a{sv}` type.
///
/// This macro serializes the deriving struct as a D-Bus dictionary type, where keys are strings and
/// values are generic values. Such dictionary types are very commonly used with
/// [D-Bus](https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties)
/// and GVariant.
///
/// # Examples
///
/// For structs it works just like serde's [`Serialize`] macros:
///
/// ```
/// use zvariant::{SerializeDict, Type};
///
/// #[derive(SerializeDict, Type)]
/// #[zvariant(signature = "a{sv}")]
/// struct Struct {
///     field1: u16,
///     #[zvariant(rename = "another-name")]
///     field2: i64,
///     optional_field: Option<String>,
/// }
/// ```
///
/// The serialized D-Bus version of `Struct {42, 77, None}`
/// will be `{"field1": Value::U16(42), "another-name": Value::I64(77)}`.
///
/// # Auto renaming fields
///
/// The macro supports specifying a Serde-like `#[zvariant(rename_all = "case")]` attribute on
/// structures. The attribute allows to rename all the fields from snake case to another case
/// automatically:
///
/// ```
/// use zvariant::{SerializeDict, Type};
///
/// #[derive(SerializeDict, Type)]
/// #[zvariant(signature = "a{sv}", rename_all = "PascalCase")]
/// struct Struct {
///     field1: u16,
///     #[zvariant(rename = "another-name")]
///     field2: i64,
///     optional_field: Option<String>,
/// }
/// ```
///
/// It's still possible to specify custom names for individual fields using the
/// `#[zvariant(rename = "another-name")]` attribute even when the `rename_all` attribute is
/// present.
///
/// Currently the macro supports the following values for `case`:
///
/// * `"lowercase"`
/// * `"UPPERCASE"`
/// * `"PascalCase"`
/// * `"camelCase"`
/// * `"snake_case"`
///
/// [`Serialize`]: https://docs.serde.rs/serde/trait.Serialize.html
#[proc_macro_derive(SerializeDict, attributes(zvariant))]
pub fn serialize_dict_macro_derive(input: TokenStream) -> TokenStream {
    let input: DeriveInput = syn::parse(input).unwrap();
    dict::expand_serialize_derive(input)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

/// Adds [`Deserialize`] implementation to structs to be deserialized from `a{sv}` type.
///
/// This macro deserializes a D-Bus dictionary type as a struct, where keys are strings and values
/// are generic values. Such dictionary types are very commonly used with
/// [D-Bus](https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties)
/// and GVariant.
///
/// # Examples
///
/// For structs it works just like serde's [`Deserialize`] macros:
///
/// ```
/// use zvariant::{DeserializeDict, Type};
///
/// #[derive(DeserializeDict, Type)]
/// #[zvariant(signature = "a{sv}")]
/// ##[allow(unused)]
/// struct Struct {
///     field1: u16,
///     #[zvariant(rename = "another-name")]
///     field2: i64,
///     optional_field: Option<String>,
/// }
/// ```
///
/// The deserialized D-Bus dictionary `{"field1": Value::U16(42), "another-name": Value::I64(77)}`
/// will be `Struct {42, 77, None}`.
///
/// # Auto renaming fields
///
/// The macro supports specifying a Serde-like `#[zvariant(rename_all = "case")]` attribute on
/// structures. The attribute allows to rename all the fields from snake case to another case
/// automatically:
///
/// ```
/// use zvariant::{SerializeDict, Type};
///
/// #[derive(SerializeDict, Type)]
/// #[zvariant(signature = "a{sv}", rename_all = "PascalCase")]
/// struct Struct {
///     field1: u16,
///     #[zvariant(rename = "another-name")]
///     field2: i64,
///     optional_field: Option<String>,
/// }
/// ```
///
/// It's still possible to specify custom names for individual fields using the
/// `#[zvariant(rename = "another-name")]` attribute even when the `rename_all` attribute is
/// present.
///
/// Currently the macro supports the following values for `case`:
///
/// * `"lowercase"`
/// * `"UPPERCASE"`
/// * `"PascalCase"`
/// * `"camelCase"`
/// * `"snake_case"`
///
/// [`Deserialize`]: https://docs.serde.rs/serde/de/trait.Deserialize.html
#[proc_macro_derive(DeserializeDict, attributes(zvariant))]
pub fn deserialize_dict_macro_derive(input: TokenStream) -> TokenStream {
    let input: DeriveInput = syn::parse(input).unwrap();
    dict::expand_deserialize_derive(input)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

/// Implements conversions for your type to/from [`Value`].
///
/// Implements `TryFrom<Value>` and `Into<Value>` for your type.
///
/// # Examples
///
/// Simple owned strutures:
///
/// ```
/// use std::convert::TryFrom;
/// use zvariant::{OwnedObjectPath, OwnedValue, Value};
///
/// #[derive(Clone, Value, OwnedValue)]
/// struct OwnedStruct {
///     owned_str: String,
///     owned_path: OwnedObjectPath,
/// }
///
/// let s = OwnedStruct {
///     owned_str: String::from("hi"),
///     owned_path: OwnedObjectPath::try_from("/blah").unwrap(),
/// };
/// let value = Value::from(s.clone());
/// let _ = OwnedStruct::try_from(value).unwrap();
/// let value = OwnedValue::from(s);
/// let s = OwnedStruct::try_from(value).unwrap();
/// assert_eq!(s.owned_str, "hi");
/// assert_eq!(s.owned_path.as_str(), "/blah");
/// ```
///
/// Now for the more exciting case of unowned structures:
///
/// ```
/// # use std::convert::TryFrom;
/// use zvariant::{ObjectPath, Str};
/// # use zvariant::{OwnedValue, Value};
/// #
/// #[derive(Clone, Value, OwnedValue)]
/// struct UnownedStruct<'a> {
///     s: Str<'a>,
///     path: ObjectPath<'a>,
/// }
///
/// let hi = String::from("hi");
/// let s = UnownedStruct {
///     s: Str::from(&hi),
///     path: ObjectPath::try_from("/blah").unwrap(),
/// };
/// let value = Value::from(s.clone());
/// let s = UnownedStruct::try_from(value).unwrap();
///
/// let value = OwnedValue::from(s);
/// let s = UnownedStruct::try_from(value).unwrap();
/// assert_eq!(s.s, "hi");
/// assert_eq!(s.path, "/blah");
/// ```
///
/// Generic structures also supported:
///
/// ```
/// # use std::convert::TryFrom;
/// # use zvariant::{OwnedObjectPath, OwnedValue, Value};
/// #
/// #[derive(Clone, Value, OwnedValue)]
/// struct GenericStruct<S, O> {
///     field1: S,
///     field2: O,
/// }
///
/// let s = GenericStruct {
///     field1: String::from("hi"),
///     field2: OwnedObjectPath::try_from("/blah").unwrap(),
/// };
/// let value = Value::from(s.clone());
/// let _ = GenericStruct::<String, OwnedObjectPath>::try_from(value).unwrap();
/// let value = OwnedValue::from(s);
/// let s = GenericStruct::<String, OwnedObjectPath>::try_from(value).unwrap();
/// assert_eq!(s.field1, "hi");
/// assert_eq!(s.field2.as_str(), "/blah");
/// ```
///
/// Enums also supported but currently only simple ones w/ an integer representation:
///
/// ```
/// # use std::convert::TryFrom;
/// # use zvariant::{OwnedValue, Value};
/// #
/// #[derive(Debug, PartialEq, Value, OwnedValue)]
/// #[repr(u8)]
/// enum Enum {
///     Variant1 = 1,
///     Variant2 = 2,
/// }
///
/// let value = Value::from(Enum::Variant1);
/// let e = Enum::try_from(value).unwrap();
/// assert_eq!(e, Enum::Variant1);
/// let value = OwnedValue::from(Enum::Variant2);
/// let e = Enum::try_from(value).unwrap();
/// assert_eq!(e, Enum::Variant2);
/// ```
///
/// # Dictionary encoding
///
/// For treating your type as a dictionary, you can use the `signature = "dict"` attribute. See
/// [`Type`] for more details and an example use. Please note that this macro can only handle
/// `dict` or `a{sv}` values. All other values will be ignored.
///
/// [`Value`]: https://docs.rs/zvariant/2.10.0/zvariant/enum.Value.html
/// [`Type`]: derive.Type.html#custom-types
#[proc_macro_derive(Value)]
pub fn value_macro_derive(input: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(input).unwrap();
    value::expand_derive(ast, value::ValueType::Value)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

/// Implements conversions for your type to/from [`OwnedValue`].
///
/// Implements `TryFrom<OwnedValue>` and `Into<OwnedValue>` for your type.
///
/// See [`Value`] documentation for examples.
///
/// [`OwnedValue`]: https://docs.rs/zvariant/2.10.0/zvariant/struct.OwnedValue.html
#[proc_macro_derive(OwnedValue)]
pub fn owned_value_macro_derive(input: TokenStream) -> TokenStream {
    let ast: DeriveInput = syn::parse(input).unwrap();
    value::expand_derive(ast, value::ValueType::OwnedValue)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}