1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#![doc(html_logo_url = "https://nical.github.io/lyon-doc/lyon-logo.svg")]
#![deny(bare_trait_objects)]
#![deny(unconditional_recursion)]
#![allow(clippy::excessive_precision)]
#![allow(clippy::let_and_return)]
#![allow(clippy::many_single_char_names)]
#![no_std]

//! Simple 2D geometric primitives on top of euclid.
//!
//! This crate is reexported in [lyon](https://docs.rs/lyon/).
//!
//! # Overview.
//!
//! This crate implements some of the maths to work with:
//!
//! - lines and line segments,
//! - quadratic and cubic bézier curves,
//! - elliptic arcs,
//! - triangles.
//!
//! # Flattening
//!
//! Flattening is the action of approximating a curve with a succession of line segments.
//!
//! <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm">
//!   <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/>
//!   <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/>
//!   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
//!   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/>
//!   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
//!   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
//!   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/>
//!   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
//!   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
//!   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
//!   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
//!   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/>
//!   <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)">
//!     <tspan x="35.74" y="284.49" font-size="10.58">→</tspan>
//!   </text>
//! </svg>
//!
//! The tolerance threshold taken as input by the flattening algorithms corresponds
//! to the maximum distance between the curve and its linear approximation.
//! The smaller the tolerance is, the more precise the approximation and the more segments
//! are generated. This value is typically chosen in function of the zoom level.
//!
//! <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg">
//!   <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/>
//!   <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/>
//!   <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/>
//!   <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/>
//!   <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/>
//!   <g fill="none" stroke="#ff7f2a" stroke-width=".26">
//!     <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/>
//!   </g>
//! </svg>
//!
//! The figure above shows a close up on a curve (the dotted line) and its linear
//! approximation (the black segments). The tolerance threshold is represented by
//! the light green area and the orange arrow.
//!

//#![allow(needless_return)] // clippy

#[cfg(any(test, feature = "std"))]
extern crate std;

// Reexport dependencies.
pub use arrayvec;
pub use euclid;

#[cfg(feature = "serialization")]
#[macro_use]
pub extern crate serde;

#[macro_use]
mod segment;
pub mod arc;
pub mod cubic_bezier;
mod cubic_bezier_intersections;
mod line;
pub mod quadratic_bezier;
mod triangle;
pub mod utils;

#[doc(inline)]
pub use crate::arc::{Arc, ArcFlags, SvgArc};
#[doc(inline)]
pub use crate::cubic_bezier::CubicBezierSegment;
#[doc(inline)]
pub use crate::line::{Line, LineEquation, LineSegment};
#[doc(inline)]
pub use crate::quadratic_bezier::QuadraticBezierSegment;
#[doc(inline)]
pub use crate::segment::Segment;
#[doc(inline)]
pub use crate::triangle::Triangle;

pub use crate::scalar::Scalar;

mod scalar {
    pub(crate) use euclid::Trig;
    pub(crate) use num_traits::cast::cast;
    pub(crate) use num_traits::{Float, FloatConst, NumCast};

    use core::fmt::{Debug, Display};
    use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign};

    pub trait Scalar:
        Float
        + NumCast
        + FloatConst
        + Sized
        + Display
        + Debug
        + Trig
        + AddAssign
        + SubAssign
        + MulAssign
        + DivAssign
    {
        const HALF: Self;
        const ZERO: Self;
        const ONE: Self;
        const TWO: Self;
        const THREE: Self;
        const FOUR: Self;
        const FIVE: Self;
        const SIX: Self;
        const SEVEN: Self;
        const EIGHT: Self;
        const NINE: Self;
        const TEN: Self;

        const MIN: Self;
        const MAX: Self;

        const EPSILON: Self;
        const DIV_EPSILON: Self = Self::EPSILON;

        /// Epsilon constants are usually not a good way to deal with float precision.
        /// Float precision depends on the magnitude of the values and so should appropriate
        /// epsilons.
        fn epsilon_for(_reference: Self) -> Self {
            Self::EPSILON
        }

        fn value(v: f32) -> Self;
    }

    impl Scalar for f32 {
        const HALF: Self = 0.5;
        const ZERO: Self = 0.0;
        const ONE: Self = 1.0;
        const TWO: Self = 2.0;
        const THREE: Self = 3.0;
        const FOUR: Self = 4.0;
        const FIVE: Self = 5.0;
        const SIX: Self = 6.0;
        const SEVEN: Self = 7.0;
        const EIGHT: Self = 8.0;
        const NINE: Self = 9.0;
        const TEN: Self = 10.0;

        const MIN: Self = f32::MIN;
        const MAX: Self = f32::MAX;

        const EPSILON: Self = 1e-4;

        fn epsilon_for(reference: Self) -> Self {
            // The thresholds are chosen by looking at the table at
            // https://blog.demofox.org/2017/11/21/floating-point-precision/ plus a bit
            // of trial and error. They might change in the future.
            // TODO: instead of casting to an integer, could look at the exponent directly.
            let magnitude = reference.abs() as i32;
            match magnitude {
                0..=7 => 1e-5,
                8..=1023 => 1e-3,
                1024..=4095 => 1e-2,
                5096..=65535 => 1e-1,
                65536..=8_388_607 => 0.5,
                _ => 1.0,
            }
        }

        #[inline]
        fn value(v: f32) -> Self {
            v
        }
    }

    // Epsilon constants are usually not a good way to deal with float precision.
    // Float precision depends on the magnitude of the values and so should appropriate
    // epsilons. This function addresses this somewhat empirically.
    impl Scalar for f64 {
        const HALF: Self = 0.5;
        const ZERO: Self = 0.0;
        const ONE: Self = 1.0;
        const TWO: Self = 2.0;
        const THREE: Self = 3.0;
        const FOUR: Self = 4.0;
        const FIVE: Self = 5.0;
        const SIX: Self = 6.0;
        const SEVEN: Self = 7.0;
        const EIGHT: Self = 8.0;
        const NINE: Self = 9.0;
        const TEN: Self = 10.0;

        const MIN: Self = f64::MIN;
        const MAX: Self = f64::MAX;

        const EPSILON: Self = 1e-8;

        fn epsilon_for(reference: Self) -> Self {
            let magnitude = reference.abs() as i64;
            match magnitude {
                0..=65_535 => 1e-8,
                65_536..=8_388_607 => 1e-5,
                8_388_608..=4_294_967_295 => 1e-3,
                _ => 1e-1,
            }
        }

        #[inline]
        fn value(v: f32) -> Self {
            v as f64
        }
    }
}

/// Alias for `euclid::default::Point2D`.
pub use euclid::default::Point2D as Point;

/// Alias for `euclid::default::Vector2D`.
pub use euclid::default::Vector2D as Vector;

/// Alias for `euclid::default::Size2D`.
pub use euclid::default::Size2D as Size;

/// Alias for `euclid::default::Box2D`
pub use euclid::default::Box2D;

/// Alias for `euclid::default::Transform2D`
pub type Transform<S> = euclid::default::Transform2D<S>;

/// Alias for `euclid::default::Rotation2D`
pub type Rotation<S> = euclid::default::Rotation2D<S>;

/// Alias for `euclid::default::Translation2D`
pub type Translation<S> = euclid::Translation2D<S, euclid::UnknownUnit, euclid::UnknownUnit>;

/// Alias for `euclid::default::Scale`
pub use euclid::default::Scale;

/// An angle in radians.
pub use euclid::Angle;

/// Shorthand for `Vector::new(x, y)`.
#[inline]
pub fn vector<S>(x: S, y: S) -> Vector<S> {
    Vector::new(x, y)
}

/// Shorthand for `Point::new(x, y)`.
#[inline]
pub fn point<S>(x: S, y: S) -> Point<S> {
    Point::new(x, y)
}

/// Shorthand for `Size::new(x, y)`.
#[inline]
pub fn size<S>(w: S, h: S) -> Size<S> {
    Size::new(w, h)
}

pub mod traits {
    pub use crate::segment::Segment;

    use crate::{Point, Rotation, Scalar, Scale, Transform, Translation, Vector};

    pub trait Transformation<S> {
        fn transform_point(&self, p: Point<S>) -> Point<S>;
        fn transform_vector(&self, v: Vector<S>) -> Vector<S>;
    }

    impl<S: Scalar> Transformation<S> for Transform<S> {
        fn transform_point(&self, p: Point<S>) -> Point<S> {
            self.transform_point(p)
        }

        fn transform_vector(&self, v: Vector<S>) -> Vector<S> {
            self.transform_vector(v)
        }
    }

    impl<S: Scalar> Transformation<S> for Rotation<S> {
        fn transform_point(&self, p: Point<S>) -> Point<S> {
            self.transform_point(p)
        }

        fn transform_vector(&self, v: Vector<S>) -> Vector<S> {
            self.transform_vector(v)
        }
    }

    impl<S: Scalar> Transformation<S> for Translation<S> {
        fn transform_point(&self, p: Point<S>) -> Point<S> {
            self.transform_point(p)
        }

        fn transform_vector(&self, v: Vector<S>) -> Vector<S> {
            v
        }
    }

    impl<S: Scalar> Transformation<S> for Scale<S> {
        fn transform_point(&self, p: Point<S>) -> Point<S> {
            (*self).transform_point(p)
        }

        fn transform_vector(&self, v: Vector<S>) -> Vector<S> {
            (*self).transform_vector(v)
        }
    }

    // Automatically implement Transformation for all &Transformation.
    impl<'l, S: Scalar, T: Transformation<S>> Transformation<S> for &'l T {
        #[inline]
        fn transform_point(&self, p: Point<S>) -> Point<S> {
            (*self).transform_point(p)
        }

        #[inline]
        fn transform_vector(&self, v: Vector<S>) -> Vector<S> {
            (*self).transform_vector(v)
        }
    }
}