enumflags2_derive/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#![recursion_limit = "2048"]
extern crate proc_macro;
#[macro_use]
extern crate quote;

use proc_macro2::{Span, TokenStream};
use std::convert::TryFrom;
use syn::{
    parse::{Parse, ParseStream},
    parse_macro_input,
    spanned::Spanned,
    Expr, Ident, DeriveInput, Data, Token, Variant,
};

struct Flag<'a> {
    name: Ident,
    span: Span,
    value: FlagValue<'a>,
}

enum FlagValue<'a> {
    Literal(u128),
    Deferred,
    Inferred(&'a mut Variant),
}

impl FlagValue<'_> {
    fn is_inferred(&self) -> bool {
        matches!(self, FlagValue::Inferred(_))
    }
}

struct Parameters {
    default: Vec<Ident>,
}

impl Parse for Parameters {
    fn parse(input: ParseStream) -> syn::parse::Result<Self> {
        if input.is_empty() {
            return Ok(Parameters { default: vec![] });
        }

        input.parse::<Token![default]>()?;
        input.parse::<Token![=]>()?;
        let mut default = vec![input.parse()?];
        while !input.is_empty() {
            input.parse::<Token![|]>()?;
            default.push(input.parse()?);
        }

        Ok(Parameters { default })
    }
}

#[proc_macro_attribute]
pub fn bitflags_internal(
    attr: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let Parameters { default } = parse_macro_input!(attr as Parameters);
    let mut ast = parse_macro_input!(input as DeriveInput);
    let output = gen_enumflags(&mut ast, default);

    output
        .unwrap_or_else(|err| {
            let error = err.to_compile_error();
            quote! {
                #ast
                #error
            }
        })
        .into()
}

/// Try to evaluate the expression given.
fn fold_expr(expr: &syn::Expr) -> Option<u128> {
    match expr {
        Expr::Lit(ref expr_lit) => match expr_lit.lit {
            syn::Lit::Int(ref lit_int) => lit_int.base10_parse().ok(),
            _ => None,
        },
        Expr::Binary(ref expr_binary) => {
            let l = fold_expr(&expr_binary.left)?;
            let r = fold_expr(&expr_binary.right)?;
            match &expr_binary.op {
                syn::BinOp::Shl(_) => u32::try_from(r).ok().and_then(|r| l.checked_shl(r)),
                _ => None,
            }
        }
        Expr::Paren(syn::ExprParen { expr, .. }) | Expr::Group(syn::ExprGroup { expr, .. }) => {
            fold_expr(expr)
        }
        _ => None,
    }
}

fn collect_flags<'a>(
    variants: impl Iterator<Item = &'a mut Variant>,
) -> Result<Vec<Flag<'a>>, syn::Error> {
    variants
        .map(|variant| {
            if !matches!(variant.fields, syn::Fields::Unit) {
                return Err(syn::Error::new_spanned(
                    &variant.fields,
                    "Bitflag variants cannot contain additional data",
                ));
            }

            let name = variant.ident.clone();
            let span = variant.span();
            let value = if let Some(ref expr) = variant.discriminant {
                if let Some(n) = fold_expr(&expr.1) {
                    FlagValue::Literal(n)
                } else {
                    FlagValue::Deferred
                }
            } else {
                FlagValue::Inferred(variant)
            };

            Ok(Flag { name, span, value })
        })
        .collect()
}

fn inferred_value(type_name: &Ident, previous_variants: &[Ident], repr: &Ident) -> Expr {
    let tokens = if previous_variants.is_empty() {
        quote!(1)
    } else {
        quote!(::enumflags2::_internal::next_bit(
                #(#type_name::#previous_variants as u128)|*
        ) as #repr)
    };

    syn::parse2(tokens).expect("couldn't parse inferred value")
}

fn infer_values(flags: &mut [Flag], type_name: &Ident, repr: &Ident) {
    let mut previous_variants: Vec<Ident> = flags
        .iter()
        .filter(|flag| !flag.value.is_inferred())
        .map(|flag| flag.name.clone())
        .collect();

    for flag in flags {
        if let FlagValue::Inferred(ref mut variant) = flag.value {
            variant.discriminant = Some((
                <Token![=]>::default(),
                inferred_value(type_name, &previous_variants, repr),
            ));
            previous_variants.push(flag.name.clone());
        }
    }
}

/// Given a list of attributes, find the `repr`, if any, and return the integer
/// type specified.
fn extract_repr(attrs: &[syn::Attribute]) -> Result<Option<Ident>, syn::Error> {
    let mut res = None;
    for attr in attrs {
        if attr.path().is_ident("repr") {
            attr.parse_nested_meta(|meta| {
                if let Some(ident) = meta.path.get_ident() {
                    res = Some(ident.clone());
                }
                Ok(())
            })?;
        }
    }
    Ok(res)
}

/// Check the repr and return the number of bits available
fn type_bits(ty: &Ident) -> Result<u8, syn::Error> {
    // This would be so much easier if we could just match on an Ident...
    if ty == "usize" {
        Err(syn::Error::new_spanned(
            ty,
            "#[repr(usize)] is not supported. Use u32 or u64 instead.",
        ))
    } else if ty == "i8"
        || ty == "i16"
        || ty == "i32"
        || ty == "i64"
        || ty == "i128"
        || ty == "isize"
    {
        Err(syn::Error::new_spanned(
            ty,
            "Signed types in a repr are not supported.",
        ))
    } else if ty == "u8" {
        Ok(8)
    } else if ty == "u16" {
        Ok(16)
    } else if ty == "u32" {
        Ok(32)
    } else if ty == "u64" {
        Ok(64)
    } else if ty == "u128" {
        Ok(128)
    } else {
        Err(syn::Error::new_spanned(
            ty,
            "repr must be an integer type for #[bitflags].",
        ))
    }
}

/// Returns deferred checks
fn check_flag(type_name: &Ident, flag: &Flag, bits: u8) -> Result<Option<TokenStream>, syn::Error> {
    use FlagValue::*;
    match flag.value {
        Literal(n) => {
            if !n.is_power_of_two() {
                Err(syn::Error::new(
                    flag.span,
                    "Flags must have exactly one set bit",
                ))
            } else if bits < 128 && n >= 1 << bits {
                Err(syn::Error::new(
                    flag.span,
                    format!("Flag value out of range for u{}", bits),
                ))
            } else {
                Ok(None)
            }
        }
        Inferred(_) => Ok(None),
        Deferred => {
            let variant_name = &flag.name;
            Ok(Some(quote_spanned!(flag.span =>
                const _:
                    <<[(); (
                        (#type_name::#variant_name as u128).is_power_of_two()
                    ) as usize] as ::enumflags2::_internal::AssertionHelper>
                        ::Status as ::enumflags2::_internal::ExactlyOneBitSet>::X
                    = ();
            )))
        }
    }
}

fn gen_enumflags(ast: &mut DeriveInput, default: Vec<Ident>) -> Result<TokenStream, syn::Error> {
    let ident = &ast.ident;

    let span = Span::call_site();

    let ast_variants = match &mut ast.data {
        Data::Enum(ref mut data) => &mut data.variants,
        Data::Struct(data) => {
            return Err(syn::Error::new_spanned(&data.struct_token,
                "expected enum for #[bitflags], found struct"));
        }
        Data::Union(data) => {
            return Err(syn::Error::new_spanned(&data.union_token,
                "expected enum for #[bitflags], found union"));
        }
    };

    if ast.generics.lt_token.is_some() || ast.generics.where_clause.is_some() {
        return Err(syn::Error::new_spanned(&ast.generics,
            "bitflags cannot be generic"));
    }

    let repr = extract_repr(&ast.attrs)?
        .ok_or_else(|| syn::Error::new_spanned(ident,
                        "repr attribute missing. Add #[repr(u64)] or a similar attribute to specify the size of the bitfield."))?;
    let bits = type_bits(&repr)?;

    let mut variants = collect_flags(ast_variants.iter_mut())?;
    let deferred = variants
        .iter()
        .flat_map(|variant| check_flag(ident, variant, bits).transpose())
        .collect::<Result<Vec<_>, _>>()?;

    infer_values(&mut variants, ident, &repr);

    if (bits as usize) < variants.len() {
        return Err(syn::Error::new_spanned(
            &repr,
            format!("Not enough bits for {} flags", variants.len()),
        ));
    }

    let std = quote_spanned!(span => ::enumflags2::_internal::core);
    let ast_variants = match &ast.data {
        Data::Enum(ref data) => &data.variants,
        _ => unreachable!(),
    };

    let variant_names = ast_variants.iter().map(|v| &v.ident).collect::<Vec<_>>();

    Ok(quote_spanned! {
        span =>
            #ast
            #(#deferred)*
            impl #std::ops::Not for #ident {
                type Output = ::enumflags2::BitFlags<Self>;
                #[inline(always)]
                fn not(self) -> Self::Output {
                    use ::enumflags2::BitFlags;
                    BitFlags::from_flag(self).not()
                }
            }

            impl #std::ops::BitOr for #ident {
                type Output = ::enumflags2::BitFlags<Self>;
                #[inline(always)]
                fn bitor(self, other: Self) -> Self::Output {
                    use ::enumflags2::BitFlags;
                    BitFlags::from_flag(self) | other
                }
            }

            impl #std::ops::BitAnd for #ident {
                type Output = ::enumflags2::BitFlags<Self>;
                #[inline(always)]
                fn bitand(self, other: Self) -> Self::Output {
                    use ::enumflags2::BitFlags;
                    BitFlags::from_flag(self) & other
                }
            }

            impl #std::ops::BitXor for #ident {
                type Output = ::enumflags2::BitFlags<Self>;
                #[inline(always)]
                fn bitxor(self, other: Self) -> Self::Output {
                    use ::enumflags2::BitFlags;
                    BitFlags::from_flag(self) ^ other
                }
            }

            unsafe impl ::enumflags2::_internal::RawBitFlags for #ident {
                type Numeric = #repr;

                const EMPTY: Self::Numeric = 0;

                const DEFAULT: Self::Numeric =
                    0 #(| (Self::#default as #repr))*;

                const ALL_BITS: Self::Numeric =
                    0 #(| (Self::#variant_names as #repr))*;

                const BITFLAGS_TYPE_NAME : &'static str =
                    concat!("BitFlags<", stringify!(#ident), ">");

                fn bits(self) -> Self::Numeric {
                    self as #repr
                }
            }

            impl ::enumflags2::BitFlag for #ident {}
    })
}