taffy/compute/grid/
placement.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//! Implements placing items in the grid and resolving the implicit grid.
//! <https://www.w3.org/TR/css-grid-1/#placement>
use super::types::{CellOccupancyMatrix, CellOccupancyState, GridItem};
use super::OriginZeroLine;
use crate::geometry::Line;
use crate::geometry::{AbsoluteAxis, InBothAbsAxis};
use crate::style::{AlignItems, GridAutoFlow, OriginZeroGridPlacement, Style};
use crate::tree::NodeId;
use crate::util::sys::Vec;

/// 8.5. Grid Item Placement Algorithm
/// Place items into the grid, generating new rows/column into the implicit grid as required
///
/// [Specification](https://www.w3.org/TR/css-grid-2/#auto-placement-algo)
pub(super) fn place_grid_items<'a, ChildIter>(
    cell_occupancy_matrix: &mut CellOccupancyMatrix,
    items: &mut Vec<GridItem>,
    children_iter: impl Fn() -> ChildIter,
    grid_auto_flow: GridAutoFlow,
    align_items: AlignItems,
    justify_items: AlignItems,
) where
    ChildIter: Iterator<Item = (usize, NodeId, &'a Style)>,
{
    let primary_axis = grid_auto_flow.primary_axis();
    let secondary_axis = primary_axis.other_axis();

    let map_child_style_to_origin_zero_placement = {
        let explicit_col_count = cell_occupancy_matrix.track_counts(AbsoluteAxis::Horizontal).explicit;
        let explicit_row_count = cell_occupancy_matrix.track_counts(AbsoluteAxis::Vertical).explicit;
        move |(index, node, style): (usize, NodeId, &'a Style)| -> (_, _, _, &'a Style) {
            let origin_zero_placement = InBothAbsAxis {
                horizontal: style.grid_column.map(|placement| placement.into_origin_zero_placement(explicit_col_count)),
                vertical: style.grid_row.map(|placement| placement.into_origin_zero_placement(explicit_row_count)),
            };
            (index, node, origin_zero_placement, style)
        }
    };

    // 1. Place children with definite positions
    let mut idx = 0;
    children_iter()
        .filter(|(_, _, child_style)| child_style.grid_row.is_definite() && child_style.grid_column.is_definite())
        .map(map_child_style_to_origin_zero_placement)
        .for_each(|(index, child_node, child_placement, style)| {
            idx += 1;
            #[cfg(test)]
            println!("Definite Item {idx}\n==============");

            let (row_span, col_span) = place_definite_grid_item(child_placement, primary_axis);
            record_grid_placement(
                cell_occupancy_matrix,
                items,
                child_node,
                index,
                style,
                align_items,
                justify_items,
                primary_axis,
                row_span,
                col_span,
                CellOccupancyState::DefinitelyPlaced,
            );
        });

    // 2. Place remaining children with definite secondary axis positions
    let mut idx = 0;
    children_iter()
        .filter(|(_, _, child_style)| {
            child_style.grid_placement(secondary_axis).is_definite()
                && !child_style.grid_placement(primary_axis).is_definite()
        })
        .map(map_child_style_to_origin_zero_placement)
        .for_each(|(index, child_node, child_placement, style)| {
            idx += 1;
            #[cfg(test)]
            println!("Definite Secondary Item {idx}\n==============");

            let (primary_span, secondary_span) =
                place_definite_secondary_axis_item(&*cell_occupancy_matrix, child_placement, grid_auto_flow);

            record_grid_placement(
                cell_occupancy_matrix,
                items,
                child_node,
                index,
                style,
                align_items,
                justify_items,
                primary_axis,
                primary_span,
                secondary_span,
                CellOccupancyState::AutoPlaced,
            );
        });

    // 3. Determine the number of columns in the implicit grid
    // By the time we get to this point in the execution, this is actually already accounted for:
    //
    // 3.1 Start with the columns from the explicit grid
    //        => Handled by grid size estimate which is used to pre-size the GridOccupancyMatrix
    //
    // 3.2 Among all the items with a definite column position (explicitly positioned items, items positioned in the previous step,
    //     and items not yet positioned but with a definite column) add columns to the beginning and end of the implicit grid as necessary
    //     to accommodate those items.
    //        => Handled by expand_to_fit_range which expands the GridOccupancyMatrix as necessary
    //            -> Called by mark_area_as
    //            -> Called by record_grid_placement
    //
    // 3.3 If the largest column span among all the items without a definite column position is larger than the width of
    //     the implicit grid, add columns to the end of the implicit grid to accommodate that column span.
    //        => Handled by grid size estimate which is used to pre-size the GridOccupancyMatrix

    // 4. Position the remaining grid items
    // (which either have definite position only in the secondary axis or indefinite positions in both axis)
    let primary_axis = grid_auto_flow.primary_axis();
    let secondary_axis = primary_axis.other_axis();
    let primary_neg_tracks = cell_occupancy_matrix.track_counts(primary_axis).negative_implicit as i16;
    let secondary_neg_tracks = cell_occupancy_matrix.track_counts(secondary_axis).negative_implicit as i16;
    let grid_start_position = (OriginZeroLine(-primary_neg_tracks), OriginZeroLine(-secondary_neg_tracks));
    let mut grid_position = grid_start_position;
    let mut idx = 0;
    children_iter()
        .filter(|(_, _, child_style)| !child_style.grid_placement(secondary_axis).is_definite())
        .map(map_child_style_to_origin_zero_placement)
        .for_each(|(index, child_node, child_placement, style)| {
            idx += 1;
            #[cfg(test)]
            println!("\nAuto Item {idx}\n==============");

            // Compute placement
            let (primary_span, secondary_span) = place_indefinitely_positioned_item(
                &*cell_occupancy_matrix,
                child_placement,
                grid_auto_flow,
                grid_position,
            );

            // Record item
            record_grid_placement(
                cell_occupancy_matrix,
                items,
                child_node,
                index,
                style,
                align_items,
                justify_items,
                primary_axis,
                primary_span,
                secondary_span,
                CellOccupancyState::AutoPlaced,
            );

            // If using the "dense" placement algorithm then reset the grid position back to grid_start_position ready for the next item
            // Otherwise set it to the position of the current item so that the next item it placed after it.
            grid_position = match grid_auto_flow.is_dense() {
                true => grid_start_position,
                false => (primary_span.end, secondary_span.start),
            }
        });
}

/// 8.5. Grid Item Placement Algorithm
/// Place a single definitely placed item into the grid
fn place_definite_grid_item(
    placement: InBothAbsAxis<Line<OriginZeroGridPlacement>>,
    primary_axis: AbsoluteAxis,
) -> (Line<OriginZeroLine>, Line<OriginZeroLine>) {
    // Resolve spans to tracks
    let primary_span = placement.get(primary_axis).resolve_definite_grid_lines();
    let secondary_span = placement.get(primary_axis.other_axis()).resolve_definite_grid_lines();

    (primary_span, secondary_span)
}

/// 8.5. Grid Item Placement Algorithm
/// Step 2. Place remaining children with definite secondary axis positions
fn place_definite_secondary_axis_item(
    cell_occupancy_matrix: &CellOccupancyMatrix,
    placement: InBothAbsAxis<Line<OriginZeroGridPlacement>>,
    auto_flow: GridAutoFlow,
) -> (Line<OriginZeroLine>, Line<OriginZeroLine>) {
    let primary_axis = auto_flow.primary_axis();
    let secondary_axis = primary_axis.other_axis();

    let secondary_axis_placement = placement.get(secondary_axis).resolve_definite_grid_lines();
    let primary_axis_grid_start_line = cell_occupancy_matrix.track_counts(primary_axis).implicit_start_line();
    let starting_position = match auto_flow.is_dense() {
        true => primary_axis_grid_start_line,
        false => cell_occupancy_matrix
            .last_of_type(primary_axis, secondary_axis_placement.start, CellOccupancyState::AutoPlaced)
            .unwrap_or(primary_axis_grid_start_line),
    };

    let mut position: OriginZeroLine = starting_position;
    loop {
        let primary_axis_placement = placement.get(primary_axis).resolve_indefinite_grid_tracks(position);

        let does_fit = cell_occupancy_matrix.line_area_is_unoccupied(
            primary_axis,
            primary_axis_placement,
            secondary_axis_placement,
        );

        if does_fit {
            return (primary_axis_placement, secondary_axis_placement);
        } else {
            position += 1;
        }
    }
}

/// 8.5. Grid Item Placement Algorithm
/// Step 4. Position the remaining grid items.
fn place_indefinitely_positioned_item(
    cell_occupancy_matrix: &CellOccupancyMatrix,
    placement: InBothAbsAxis<Line<OriginZeroGridPlacement>>,
    auto_flow: GridAutoFlow,
    grid_position: (OriginZeroLine, OriginZeroLine),
) -> (Line<OriginZeroLine>, Line<OriginZeroLine>) {
    let primary_axis = auto_flow.primary_axis();

    let primary_placement_style = placement.get(primary_axis);
    let secondary_placement_style = placement.get(primary_axis.other_axis());

    let primary_span = primary_placement_style.indefinite_span();
    let secondary_span = secondary_placement_style.indefinite_span();
    let has_definite_primary_axis_position = primary_placement_style.is_definite();
    let primary_axis_grid_start_line = cell_occupancy_matrix.track_counts(primary_axis).implicit_start_line();
    let primary_axis_grid_end_line = cell_occupancy_matrix.track_counts(primary_axis).implicit_end_line();
    let secondary_axis_grid_start_line =
        cell_occupancy_matrix.track_counts(primary_axis.other_axis()).implicit_start_line();

    let line_area_is_occupied = |primary_span, secondary_span| {
        !cell_occupancy_matrix.line_area_is_unoccupied(primary_axis, primary_span, secondary_span)
    };

    let (mut primary_idx, mut secondary_idx) = grid_position;

    if has_definite_primary_axis_position {
        let definite_primary_placement = primary_placement_style.resolve_definite_grid_lines();
        let defined_primary_idx = definite_primary_placement.start;

        // Compute starting position for search
        if defined_primary_idx < primary_idx && secondary_idx != secondary_axis_grid_start_line {
            secondary_idx = secondary_axis_grid_start_line;
            primary_idx = defined_primary_idx + 1;
        } else {
            primary_idx = defined_primary_idx;
        }

        // Item has fixed primary axis position: so we simply increment the secondary axis position
        // until we find a space that the item fits in
        loop {
            let primary_span = Line { start: primary_idx, end: primary_idx + primary_span };
            let secondary_span = Line { start: secondary_idx, end: secondary_idx + secondary_span };

            // If area is occupied, increment the index and try again
            if line_area_is_occupied(primary_span, secondary_span) {
                secondary_idx += 1;
                continue;
            }

            // Once we find a free space, return that position
            return (primary_span, secondary_span);
        }
    } else {
        // Item does not have any fixed axis, so we search along the primary axis until we hit the end of the already
        // existent tracks, and then we reset the primary axis back to zero and increment the secondary axis index.
        // We continue in this vein until we find a space that the item fits in.
        loop {
            let primary_span = Line { start: primary_idx, end: primary_idx + primary_span };
            let secondary_span = Line { start: secondary_idx, end: secondary_idx + secondary_span };

            // If the primary index is out of bounds, then increment the secondary index and reset the primary
            // index back to the start of the grid
            let primary_out_of_bounds = primary_span.end > primary_axis_grid_end_line;
            if primary_out_of_bounds {
                secondary_idx += 1;
                primary_idx = primary_axis_grid_start_line;
                continue;
            }

            // If area is occupied, increment the primary index and try again
            if line_area_is_occupied(primary_span, secondary_span) {
                primary_idx += 1;
                continue;
            }

            // Once we find a free space that's in bounds, return that position
            return (primary_span, secondary_span);
        }
    }
}

/// Record the grid item in both CellOccupancyMatric and the GridItems list
/// once a definite placement has been determined
#[allow(clippy::too_many_arguments)]
fn record_grid_placement(
    cell_occupancy_matrix: &mut CellOccupancyMatrix,
    items: &mut Vec<GridItem>,
    node: NodeId,
    index: usize,
    style: &Style,
    parent_align_items: AlignItems,
    parent_justify_items: AlignItems,
    primary_axis: AbsoluteAxis,
    primary_span: Line<OriginZeroLine>,
    secondary_span: Line<OriginZeroLine>,
    placement_type: CellOccupancyState,
) {
    #[cfg(test)]
    println!("BEFORE placement:");
    #[cfg(test)]
    println!("{cell_occupancy_matrix:?}");

    // Mark area of grid as occupied
    cell_occupancy_matrix.mark_area_as(primary_axis, primary_span, secondary_span, placement_type);

    // Create grid item
    let (col_span, row_span) = match primary_axis {
        AbsoluteAxis::Horizontal => (primary_span, secondary_span),
        AbsoluteAxis::Vertical => (secondary_span, primary_span),
    };
    items.push(GridItem::new_with_placement_style_and_order(
        node,
        col_span,
        row_span,
        style,
        parent_align_items,
        parent_justify_items,
        index as u16,
    ));

    #[cfg(test)]
    println!("AFTER placement:");
    #[cfg(test)]
    println!("{cell_occupancy_matrix:?}");
    #[cfg(test)]
    println!("\n");
}

#[allow(clippy::bool_assert_comparison)]
#[cfg(test)]
mod tests {
    // It's more readable if the test code is uniform, so we tolerate unnecessary clones in tests
    #![allow(clippy::redundant_clone)]

    mod test_placement_algorithm {
        use crate::compute::grid::implicit_grid::compute_grid_size_estimate;
        use crate::compute::grid::types::TrackCounts;
        use crate::compute::grid::util::*;
        use crate::compute::grid::CellOccupancyMatrix;
        use crate::prelude::*;
        use crate::style::GridAutoFlow;

        use super::super::place_grid_items;

        type ExpectedPlacement = (i16, i16, i16, i16);

        fn placement_test_runner(
            explicit_col_count: u16,
            explicit_row_count: u16,
            children: Vec<(usize, Style, ExpectedPlacement)>,
            expected_col_counts: TrackCounts,
            expected_row_counts: TrackCounts,
            flow: GridAutoFlow,
        ) {
            // Setup test
            let children_iter = || children.iter().map(|(index, style, _)| (*index, NodeId::from(*index), style));
            let child_styles_iter = children.iter().map(|(_, style, _)| style);
            let estimated_sizes = compute_grid_size_estimate(explicit_col_count, explicit_row_count, child_styles_iter);
            let mut items = Vec::new();
            let mut cell_occupancy_matrix =
                CellOccupancyMatrix::with_track_counts(estimated_sizes.0, estimated_sizes.1);

            // Run placement algorithm
            place_grid_items(
                &mut cell_occupancy_matrix,
                &mut items,
                children_iter,
                flow,
                AlignSelf::Start,
                AlignSelf::Start,
            );

            // Assert that each item has been placed in the right location
            let mut sorted_children = children.clone();
            sorted_children.sort_by_key(|child| child.0);
            for (idx, ((id, _style, expected_placement), item)) in sorted_children.iter().zip(items.iter()).enumerate()
            {
                assert_eq!(item.node, NodeId::from(*id));
                let actual_placement = (item.column.start, item.column.end, item.row.start, item.row.end);
                assert_eq!(actual_placement, (*expected_placement).into_oz(), "Item {idx} (0-indexed)");
            }

            // Assert that the correct number of implicit rows have been generated
            let actual_row_counts = *cell_occupancy_matrix.track_counts(crate::compute::grid::AbsoluteAxis::Vertical);
            assert_eq!(actual_row_counts, expected_row_counts, "row track counts");
            let actual_col_counts = *cell_occupancy_matrix.track_counts(crate::compute::grid::AbsoluteAxis::Horizontal);
            assert_eq!(actual_col_counts, expected_col_counts, "column track counts");
        }

        #[test]
        fn test_only_fixed_placement() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // node, style (grid coords), expected_placement (oz coords)
                    (1, (line(1), auto(), line(1), auto()).into_grid_child(), (0, 1, 0, 1)),
                    (2, (line(-4), auto(), line(-3), auto()).into_grid_child(), (-1, 0, 0, 1)),
                    (3, (line(-3), auto(), line(-4), auto()).into_grid_child(), (0, 1, -1, 0)),
                    (4, (line(3), span(2), line(5), auto()).into_grid_child(), (2, 4, 4, 5)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 1, explicit: 2, positive_implicit: 2 };
            let expected_rows = TrackCounts { negative_implicit: 1, explicit: 2, positive_implicit: 3 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_placement_spanning_origin() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // node, style (grid coords), expected_placement (oz coords)
                    (1, (line(-1), line(-1), line(-1), line(-1)).into_grid_child(), (2, 3, 2, 3)),
                    (2, (line(-1), span(2), line(-1), span(2)).into_grid_child(), (2, 4, 2, 4)),
                    (3, (line(-4), line(-4), line(-4), line(-4)).into_grid_child(), (-1, 0, -1, 0)),
                    (4, (line(-4), span(2), line(-4), span(2)).into_grid_child(), (-1, 1, -1, 1)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 1, explicit: 2, positive_implicit: 2 };
            let expected_rows = TrackCounts { negative_implicit: 1, explicit: 2, positive_implicit: 2 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_only_auto_placement_row_flow() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                let auto_child = (auto(), auto(), auto(), auto()).into_grid_child();
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, auto_child.clone(), (0, 1, 0, 1)),
                    (2, auto_child.clone(), (1, 2, 0, 1)),
                    (3, auto_child.clone(), (0, 1, 1, 2)),
                    (4, auto_child.clone(), (1, 2, 1, 2)),
                    (5, auto_child.clone(), (0, 1, 2, 3)),
                    (6, auto_child.clone(), (1, 2, 2, 3)),
                    (7, auto_child.clone(), (0, 1, 3, 4)),
                    (8, auto_child.clone(), (1, 2, 3, 4)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 0 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 2 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_only_auto_placement_column_flow() {
            let flow = GridAutoFlow::Column;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                let auto_child = (auto(), auto(), auto(), auto()).into_grid_child();
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, auto_child.clone(), (0, 1, 0, 1)),
                    (2, auto_child.clone(), (0, 1, 1, 2)),
                    (3, auto_child.clone(), (1, 2, 0, 1)),
                    (4, auto_child.clone(), (1, 2, 1, 2)),
                    (5, auto_child.clone(), (2, 3, 0, 1)),
                    (6, auto_child.clone(), (2, 3, 1, 2)),
                    (7, auto_child.clone(), (3, 4, 0, 1)),
                    (8, auto_child.clone(), (3, 4, 1, 2)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 2 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_oversized_item() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, (span(5), auto(), auto(), auto()).into_grid_child(), (0, 5, 0, 1)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 3 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_fixed_in_secondary_axis() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, (span(2), auto(), line(1), auto()).into_grid_child(), (0, 2, 0, 1)),
                    (2, (auto(), auto(), line(2), auto()).into_grid_child(), (0, 1, 1, 2)),
                    (3, (auto(), auto(), line(1), auto()).into_grid_child(), (2, 3, 0, 1)),
                    (4, (auto(), auto(), line(4), auto()).into_grid_child(), (0, 1, 3, 4)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 1 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 2 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_definite_in_secondary_axis_with_fully_definite_negative() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (2, (auto(), auto(), line(2), auto()).into_grid_child(), (0, 1, 1, 2)),
                    (1, (line(-4), auto(), line(2), auto()).into_grid_child(), (-1, 0, 1, 2)),
                    (3, (auto(), auto(), line(1), auto()).into_grid_child(), (-1, 0, 0, 1)),
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 1, explicit: 2, positive_implicit: 0 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_dense_packing_algorithm() {
            let flow = GridAutoFlow::RowDense;
            let explicit_col_count = 4;
            let explicit_row_count = 4;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, (line(2), auto(), line(1), auto()).into_grid_child(), (1, 2, 0, 1)), // Definitely positioned in column 2
                    (2, (span(2), auto(), auto(), auto()).into_grid_child(), (2, 4, 0, 1)), // Spans 2 columns, so positioned after item 1
                    (3, (auto(), auto(), auto(), auto()).into_grid_child(), (0, 1, 0, 1)), // Spans 1 column, so should be positioned before item 1
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 4, positive_implicit: 0 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 4, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_sparse_packing_algorithm() {
            let flow = GridAutoFlow::Row;
            let explicit_col_count = 4;
            let explicit_row_count = 4;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, (auto(), span(3), auto(), auto()).into_grid_child(), (0, 3, 0, 1)), // Width 3
                    (2, (auto(), span(3), auto(), auto()).into_grid_child(), (0, 3, 1, 2)), // Width 3 (wraps to next row)
                    (3, (auto(), span(1), auto(), auto()).into_grid_child(), (3, 4, 1, 2)), // Width 1 (uses second row as we're already on it)
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 0, explicit: 4, positive_implicit: 0 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 4, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }

        #[test]
        fn test_auto_placement_in_negative_tracks() {
            let flow = GridAutoFlow::RowDense;
            let explicit_col_count = 2;
            let explicit_row_count = 2;
            let children = {
                vec![
                    // output order, node, style (grid coords), expected_placement (oz coords)
                    (1, (line(-5), auto(), line(1), auto()).into_grid_child(), (-2, -1, 0, 1)), // Row 1. Definitely positioned in column -2
                    (2, (auto(), auto(), line(2), auto()).into_grid_child(), (-2, -1, 1, 2)), // Row 2. Auto positioned in column -2
                    (3, (auto(), auto(), auto(), auto()).into_grid_child(), (-1, 0, 0, 1)), // Row 1. Auto positioned in column -1
                ]
            };
            let expected_cols = TrackCounts { negative_implicit: 2, explicit: 2, positive_implicit: 0 };
            let expected_rows = TrackCounts { negative_implicit: 0, explicit: 2, positive_implicit: 0 };
            placement_test_runner(explicit_col_count, explicit_row_count, children, expected_cols, expected_rows, flow);
        }
    }
}