1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use std::{
    convert::TryInto,
    pin::Pin,
    sync::Arc,
    task::{Context, Poll},
};

use async_broadcast::Receiver as ActiveReceiver;
use futures_core::stream;
use futures_util::stream::FusedStream;
use ordered_stream::{OrderedStream, PollResult};
use static_assertions::assert_impl_all;
use tracing::warn;

use crate::{
    AsyncDrop, Connection, ConnectionInner, MatchRule, Message, MessageSequence, OwnedMatchRule,
    Result,
};

/// A [`stream::Stream`] implementation that yields [`Message`] items.
///
/// You can convert a [`Connection`] to this type and back to [`Connection`].
///
/// **NOTE**: You must ensure a `MessageStream` is continuously polled or you will experience hangs.
/// If you don't need to continuously poll the `MessageStream` but need to keep it around for later
/// use, keep the connection around and convert it into a `MessageStream` when needed. The
/// conversion is not an expensive operation so you don't need to  worry about performance, unless
/// you do it very frequently. If you need to convert back and forth frequently, you may want to
/// consider keeping both a connection and stream around.
#[derive(Clone, Debug)]
#[must_use = "streams do nothing unless polled"]
pub struct MessageStream {
    inner: Inner,
}

assert_impl_all!(MessageStream: Send, Sync, Unpin);

impl MessageStream {
    /// Create a message stream for the given match rule.
    ///
    /// If `conn` is a bus connection and match rule is for a signal, the match rule will be
    /// registered with the bus and queued for deregistration when the stream is dropped. If you'd
    /// like immediate deregistration, use [`AsyncDrop::async_drop`]. The reason match rules are
    /// only registered with the bus for signals is that D-Bus specification only allows signals to
    /// be broadcasted and unicast messages are always sent to their destination (regardless of any
    /// match rules registered by the destination) by the bus. Hence there is no need to register
    /// match rules for non-signal messages with the bus.
    ///
    /// Having said that, stream created by this method can still very useful as it allows you to
    /// avoid needless task wakeups and simplify your stream consuming code.
    ///
    /// You can optionally also request the capacity of the underlying message queue through
    /// `max_queued`. If specified, the capacity is guaranteed to be at least `max_queued`. If not
    /// specified, the default of 64 is assumed. The capacity can also be changed later through
    /// [`MessageStream::set_max_queued`].
    ///
    /// # Example
    ///
    /// ```
    /// use async_io::Timer;
    /// use zbus::{AsyncDrop, Connection, MatchRule, MessageStream, fdo::NameOwnerChanged};
    /// use futures_util::{TryStreamExt, future::select, future::Either::{Left, Right}, pin_mut};
    ///
    /// # zbus::block_on(async {
    /// let conn = Connection::session().await?;
    /// let rule = MatchRule::builder()
    ///     .msg_type(zbus::MessageType::Signal)
    ///     .sender("org.freedesktop.DBus")?
    ///     .interface("org.freedesktop.DBus")?
    ///     .member("NameOwnerChanged")?
    ///     .add_arg("org.freedesktop.zbus.MatchRuleStreamTest42")?
    ///     .build();
    /// let mut stream = MessageStream::for_match_rule(
    ///     rule,
    ///     &conn,
    ///     // For such a specific match rule, we don't need a big queue.
    ///     Some(1),
    /// ).await?;
    ///
    /// let rule_str = "type='signal',sender='org.freedesktop.DBus',\
    ///                 interface='org.freedesktop.DBus',member='NameOwnerChanged',\
    ///                 arg0='org.freedesktop.zbus.MatchRuleStreamTest42'";
    /// assert_eq!(
    ///     stream.match_rule().map(|r| r.to_string()).as_deref(),
    ///     Some(rule_str),
    /// );
    ///
    /// // We register 2 names, starting with the uninteresting one. If `stream` wasn't filtering
    /// // messages based on the match rule, we'd receive method return call for each of these 2
    /// // calls first.
    /// //
    /// // Note that the `NameOwnerChanged` signal will not be sent by the bus  for the first name
    /// // we register since we setup an arg filter.
    /// conn.request_name("org.freedesktop.zbus.MatchRuleStreamTest44")
    ///     .await?;
    /// conn.request_name("org.freedesktop.zbus.MatchRuleStreamTest42")
    ///     .await?;
    ///
    /// let msg = stream.try_next().await?.unwrap();
    /// let signal = NameOwnerChanged::from_message(msg).unwrap();
    /// assert_eq!(signal.args()?.name(), "org.freedesktop.zbus.MatchRuleStreamTest42");
    /// stream.async_drop().await;
    ///
    /// // Ensure the match rule is deregistered and this connection doesn't receive
    /// // `NameOwnerChanged` signals.
    /// let stream = MessageStream::from(&conn).try_filter_map(|msg| async move {
    ///     Ok(NameOwnerChanged::from_message(msg))
    /// });
    /// conn.release_name("org.freedesktop.zbus.MatchRuleStreamTest42").await?;
    ///
    /// pin_mut!(stream);
    /// let next = stream.try_next();
    /// pin_mut!(next);
    /// let timeout = Timer::after(std::time::Duration::from_millis(50));
    /// pin_mut!(timeout);
    /// match select(next, timeout).await {
    ///    Left((msg, _)) => unreachable!("unexpected message: {:?}", msg),
    ///    Right((_, _)) => (),
    /// }
    ///
    /// # Ok::<(), zbus::Error>(())
    /// # }).unwrap();
    /// ```
    ///
    /// # Caveats
    ///
    /// Since this method relies on [`MatchRule::matches`], it inherits its caveats.
    pub async fn for_match_rule<R>(
        rule: R,
        conn: &Connection,
        max_queued: Option<usize>,
    ) -> Result<Self>
    where
        R: TryInto<OwnedMatchRule>,
        R::Error: Into<crate::Error>,
    {
        let rule = rule.try_into().map_err(Into::into)?;
        let msg_receiver = conn.add_match(rule.clone(), max_queued).await?;

        Ok(Self::for_subscription_channel(
            msg_receiver,
            Some(rule),
            conn,
        ))
    }

    /// The associated match rule, if any.
    pub fn match_rule(&self) -> Option<MatchRule<'_>> {
        self.inner.match_rule.as_deref().cloned()
    }

    /// The maximum number of messages to queue for this stream.
    pub fn max_queued(&self) -> usize {
        self.inner.msg_receiver.capacity()
    }

    /// Set maximum number of messages to queue for this stream.
    ///
    /// After this call, the capacity is guaranteed to be at least `max_queued`.
    pub fn set_max_queued(&mut self, max_queued: usize) {
        if max_queued <= self.max_queued() {
            return;
        }
        self.inner.msg_receiver.set_capacity(max_queued);
    }

    pub(crate) fn for_subscription_channel(
        msg_receiver: ActiveReceiver<Result<Arc<Message>>>,
        rule: Option<OwnedMatchRule>,
        conn: &Connection,
    ) -> Self {
        let conn_inner = conn.inner.clone();

        Self {
            inner: Inner {
                conn_inner,
                msg_receiver,
                match_rule: rule,
            },
        }
    }
}

impl stream::Stream for MessageStream {
    type Item = Result<Arc<Message>>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = self.get_mut();

        Pin::new(&mut this.inner.msg_receiver).poll_next(cx)
    }
}

impl OrderedStream for MessageStream {
    type Data = Result<Arc<Message>>;
    type Ordering = MessageSequence;

    fn poll_next_before(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        before: Option<&Self::Ordering>,
    ) -> Poll<PollResult<Self::Ordering, Self::Data>> {
        let this = self.get_mut();

        match stream::Stream::poll_next(Pin::new(this), cx) {
            Poll::Pending if before.is_some() => {
                // Assume the provided MessageSequence in before was obtained from a Message
                // associated with our Connection (because that's the only supported use case).
                // Because there is only one socket-reader task, any messages that would have been
                // ordered before that message would have already been sitting in the broadcast
                // queue (and we would have seen Ready in our poll).  Because we didn't, we can
                // guarantee that we won't ever produce a message whose sequence is before that
                // provided value, and so we can return NoneBefore.
                //
                // This ensures that ordered_stream::Join will never return Pending while it
                // has a message buffered.
                Poll::Ready(PollResult::NoneBefore)
            }
            Poll::Pending => Poll::Pending,
            Poll::Ready(Some(Ok(msg))) => Poll::Ready(PollResult::Item {
                ordering: msg.recv_position(),
                data: Ok(msg),
            }),
            Poll::Ready(Some(Err(e))) => Poll::Ready(PollResult::Item {
                ordering: MessageSequence::LAST,
                data: Err(e),
            }),
            Poll::Ready(None) => Poll::Ready(PollResult::Terminated),
        }
    }
}

impl FusedStream for MessageStream {
    fn is_terminated(&self) -> bool {
        self.inner.msg_receiver.is_terminated()
    }
}

impl From<Connection> for MessageStream {
    fn from(conn: Connection) -> Self {
        let conn_inner = conn.inner;
        let msg_receiver = conn_inner.msg_receiver.activate_cloned();

        Self {
            inner: Inner {
                conn_inner,
                msg_receiver,
                match_rule: None,
            },
        }
    }
}

impl From<&Connection> for MessageStream {
    fn from(conn: &Connection) -> Self {
        Self::from(conn.clone())
    }
}

impl From<MessageStream> for Connection {
    fn from(stream: MessageStream) -> Connection {
        Connection::from(&stream)
    }
}

impl From<&MessageStream> for Connection {
    fn from(stream: &MessageStream) -> Connection {
        Connection {
            inner: stream.inner.conn_inner.clone(),
        }
    }
}

#[derive(Clone, Debug)]
struct Inner {
    conn_inner: Arc<ConnectionInner>,
    msg_receiver: ActiveReceiver<Result<Arc<Message>>>,
    match_rule: Option<OwnedMatchRule>,
}

impl Drop for Inner {
    fn drop(&mut self) {
        let conn = Connection {
            inner: self.conn_inner.clone(),
        };

        if let Some(rule) = self.match_rule.take() {
            conn.queue_remove_match(rule);
        }
    }
}

#[async_trait::async_trait]
impl AsyncDrop for MessageStream {
    async fn async_drop(mut self) {
        let conn = Connection {
            inner: self.inner.conn_inner.clone(),
        };

        if let Some(rule) = self.inner.match_rule.take() {
            if let Err(e) = conn.remove_match(rule).await {
                warn!("Failed to remove match rule: {}", e);
            }
        }
    }
}