1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
//! A library that makes linear color calculations and conversion easy and
//! accessible for anyone. It uses the type system to enforce correctness and to
//! avoid mistakes, such as mixing incompatible color types.
//!
//! # Where Do I Start?
//!
//! The sections below give an overview of how the types in this library work,
//! including color conversion. If you want to get your hands dirty, you'll
//! probably want to start with [`Srgb`] or [`Srgba`]. They are aliases for the
//! more generic [`Rgb`](rgb::Rgb) type and represent sRGB(A), the most common
//! RGB format in images and tools. Their documentation has more details and
//! examples.
//!
//! The documentation for each module and type goes deeper into their concepts.
//! Here are a few you may want to read:
//!
//! * [`Rgb`](rgb::Rgb) - For getting started with RGB values.
//! * [`Alpha`] - For more details on transparency.
//! * [`convert`] - Describes the conversion traits and how to use and implement
//! them.
//! * [`cast`] - Describes how to cast color types to and from other data
//! formats, such as arrays and unsigned integers.
//! * [`color_difference`] - Describes different ways of measuring the
//! difference between colors.
//!
//! # Type Safety for Colors
//!
//! Digital colors are not "just RGB", and not even RGB is "just RGB". There are
//! multiple representations of color, with a variety of pros and cons, and
//! multiple standards for how to encode and decode them. Palette represents
//! these "color spaces" as separate types for increased expressiveness and to
//! prevent mistakes.
//!
//! Taking RGB as an example, it's often stored or displayed as "gamma
//! corrected" values, meaning that a non-linear function has been applied to
//! its values. This encoding is not suitable for all kinds of calculations
//! (such as rescaling) and will give visibly incorrect results. Functions that
//! require linear RGB can therefore request, for example, [`LinSrgb`] as their
//! input type.
//!
//! ```rust,compile_fail
//! // Srgb is an alias for Rgb<Srgb, T>, which is what most pictures store.
//! // LinSrgb is an alias for Rgb<Linear<Srgb>, T>, better for color manipulation.
//! use palette::{Srgb, LinSrgb};
//!
//! fn do_something(a: LinSrgb, b: LinSrgb) -> LinSrgb {
//! // ...
//! # LinSrgb::default()
//! }
//!
//! let orangeish = Srgb::new(1.0, 0.6, 0.0);
//! let blueish = Srgb::new(0.0, 0.2, 1.0);
//! let result = do_something(orangeish, blueish); // Does not compile
//! ```
//!
//! The colors will have to be decoded before being used in the function:
//!
//! ```rust
//! // Srgb is an alias for Rgb<Srgb, T>, which is what most pictures store.
//! // LinSrgb is an alias for Rgb<Linear<Srgb>, T>, better for color manipulation.
//! use palette::{Srgb, LinSrgb};
//!
//! fn do_something(a: LinSrgb, b: LinSrgb) -> LinSrgb {
//! // ...
//! # LinSrgb::default()
//! }
//!
//! let orangeish = Srgb::new(1.0, 0.6, 0.0).into_linear();
//! let blueish = Srgb::new(0.0, 0.2, 1.0).into_linear();
//! let result = do_something(orangeish, blueish);
//! ```
//!
//! See the [rgb] module for a deeper dive into RGB and (non-)linearity.
//!
//! # Color Spaces and Conversion
//!
//! As the previous section mentions, there are many different ways of
//! representing colors. These "color spaces" are represented as different types
//! in Palette, each with a description of what it is and how it works. Most of
//! them also have two type parameters for customization:
//!
//! * The component type (`T`) that decides which number type is used. The
//! default is `f32`, but `u8`, `f64`, and any other type that implement the
//! required traits will work. Including SIMD types in many cases.
//! * The reference white point (`W`) or standard (`S`) that affects the range,
//! encoding or display properties of the color. This varies between color
//! spaces and can usually be left as its default or be set via a type alias.
//! For example, the [`Srgb`] and [`LinSrgb`] type aliases are both variants
//! of the [`Rgb`][rgb::Rgb] type, but with different standard (`S`) types.
//!
//! Selecting the proper color space can have a big impact on how the resulting
//! image looks (as illustrated by some of the programs in `examples`), and
//! Palette makes the conversion between them as easy as a call to
//! [`from_color`][FromColor::from_color] or
//! [`into_color`][IntoColor::into_color].
//!
//! This example takes an sRGB color, converts it to CIE L\*C\*h°, a color space
//! similar to the colloquial HSL/HSV color spaces, shifts its hue by 180° and
//! converts it back to RGB:
//!
//! ```
//! use palette::{FromColor, ShiftHue, IntoColor, Lch, Srgb};
//!
//! let lch_color: Lch = Srgb::new(0.8, 0.2, 0.1).into_color();
//! let new_color = Srgb::from_color(lch_color.shift_hue(180.0));
//! ```
//!
//! # Transparency
//!
//! There are many cases where pixel transparency is important, but there are
//! also many cases where it would just be unused memory space. Palette has
//! therefore adopted a structure where the transparency component (alpha) is
//! attachable using the [`Alpha`] type. This approach has shown to be very
//! modular and easy to maintain, compared to having transparent copies of each
//! type.
//!
//! An additional benefit is allowing operations to selectively affect the alpha
//! component:
//!
//! ```rust
//! // Each color type has a transparent alias that ends with "a" for "alpha"
//! use palette::{LinSrgb, LinSrgba};
//!
//! let mut c1 = LinSrgba::new(1.0, 0.5, 0.5, 0.8);
//! let c2 = LinSrgb::new(0.5, 1.0, 1.0);
//!
//! c1.color = c1.color * c2; //Leave the alpha as it is
//! c1.blue += 0.2; //The color components can easily be accessed
//! c1 = c1 * 0.5; //Scale both the color and the alpha
//! ```
//!
//! There's also [`PreAlpha`][blend::PreAlpha] that represents pre-multiplied
//! alpha (also known as alpha masked colors). It's commonly used in color
//! blending and composition.
//!
//! # Images and Buffers
//!
//! Oftentimes, pixel data is stored in a plain array or slice such as a `[u8;
//! 3]`. The [`cast`] module allows for easy conversion between Palette colors
//! and arrays or slices. This also helps when working with other crates or
//! systems. Here's an example of how the pixels in an image from the `image`
//! crate can be worked with as `Srgb<u8>`:
//!
//! ```rust
//! use image::RgbImage;
//! use palette::{Srgb, Oklab, cast::FromComponents, Lighten, IntoColor, FromColor};
//!
//! fn lighten(image: &mut RgbImage, amount: f32) {
//! // RgbImage can be dereferenced as [u8], allowing us to cast it as a
//! // component slice to sRGB with u8 components.
//! for pixel in <&mut [Srgb<u8>]>::from_components(&mut **image) {
//! // Converting to linear sRGB with f32 components, and then to Oklab.
//! let color: Oklab = pixel.into_linear::<f32>().into_color();
//!
//! let lightened_color = color.lighten(amount);
//!
//! // Converting back to non-linear sRGB with u8 components.
//! *pixel = Srgb::from_linear(lightened_color.into_color());
//! }
//! }
//! ```
//!
//! Some of the conversions are also implemented on the color types as `From`,
//! `TryFrom`, `Into`, `TryFrom` and `AsRef`. This example shows how `from` can
//! be used to convert a `[u8;3]` into a Palette color, `into_format` converts
//! from `Srgb<u8>` to `Srgb<f32>`, and finally `into` converts back from a
//! Palette color back to a `[u8;3]`:
//!
//! ```rust
//! use approx::assert_relative_eq;
//! use palette::Srgb;
//!
//! let buffer = [255, 0, 255];
//! let srgb = Srgb::from(buffer);
//! assert_eq!(srgb, Srgb::<u8>::new(255u8, 0, 255));
//!
//! let srgb_float: Srgb<f32> = srgb.into_format();
//! assert_relative_eq!(srgb_float, Srgb::new(1.0, 0.0, 1.0));
//!
//! let array: [u8; 3] = srgb_float.into_format().into();
//! assert_eq!(array, buffer);
//! ```
//!
//! # A Basic Workflow
//!
//! The overall workflow can be divided into three steps, where the first and
//! last may be taken care of by other parts of the application:
//!
//! ```text
//! Decoding -> Processing -> Encoding
//! ```
//!
//! ## 1. Decoding
//!
//! Find out what the source format is and convert it to a linear color space.
//! There may be a specification, such as when working with SVG or CSS.
//!
//! When working with RGB or gray scale (luma):
//!
//! * If you are asking your user to enter an RGB value, you are in a gray zone
//! where it depends on the context. It's usually safe to assume sRGB, but
//! sometimes it's already linear.
//!
//! * If you are decoding an image, there may be some meta data that gives you
//! the necessary details. Otherwise it's most commonly sRGB. Usually you will
//! end up with a slice or vector with RGB bytes, which can easily be converted
//! to Palette colors:
//!
//! ```rust
//! # let mut image_buffer: Vec<u8> = vec![];
//! use palette::{Srgb, cast::ComponentsAsMut};
//!
//! // This works for any color type (not only RGB) that can have the
//! // buffer element type as component.
//! let color_buffer: &mut [Srgb<u8>] = image_buffer.components_as_mut();
//! ```
//!
//! * If you are getting your colors from the GPU, in a game or other graphical
//! application, or if they are otherwise generated by the application, then
//! chances are that they are already linear. Still, make sure to check that
//! they are not being encoded somewhere.
//!
//! When working with other colors:
//!
//! * For HSL, HSV, HWB: Check if they are based on any other color space than
//! sRGB, such as Adobe or Apple RGB.
//!
//! * For any of the CIE color spaces, check for a specification of white point
//! and light source. These are necessary for converting to RGB and other
//! colors, that depend on perception and "viewing devices". Common defaults are
//! the D65 light source and the sRGB white point. The Palette defaults should
//! take you far.
//!
//! ## 2. Processing
//!
//! When your color has been decoded into some Palette type, it's ready for
//! processing. This includes things like blending, hue shifting, darkening and
//! conversion to other formats. Just make sure that your non-linear RGB is made
//! linear first (`my_srgb.into_linear()`), to make the operations available.
//!
//! Different color spaced have different capabilities, pros and cons. You may
//! have to experiment a bit (or look at the example programs) to find out what
//! gives the desired result.
//!
//! ## 3. Encoding
//!
//! When the desired processing is done, it's time to encode the colors back
//! into some image format. The same rules applies as for the decoding, but the
//! process reversed.
// Keep the standard library when running tests, too
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
#![doc(html_root_url = "https://docs.rs/palette/0.7.6/")]
#![warn(missing_docs)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(any(feature = "std", test))]
extern crate core;
#[cfg(feature = "approx")]
#[cfg_attr(test, macro_use)]
extern crate approx;
#[macro_use]
extern crate palette_derive;
#[cfg(feature = "phf")]
extern crate phf;
#[cfg(feature = "serializing")]
#[macro_use]
extern crate serde as _;
#[cfg(all(test, feature = "serializing"))]
extern crate serde_json;
use core::ops::{BitAndAssign, Neg};
use bool_mask::{BoolMask, HasBoolMask};
use luma::Luma;
#[doc(inline)]
pub use alpha::{Alpha, WithAlpha};
#[doc(inline)]
pub use hsl::{Hsl, Hsla};
#[doc(inline)]
pub use hsluv::{Hsluv, Hsluva};
#[doc(inline)]
pub use hsv::{Hsv, Hsva};
#[doc(inline)]
pub use hwb::{Hwb, Hwba};
#[doc(inline)]
pub use lab::{Lab, Laba};
#[doc(inline)]
pub use lch::{Lch, Lcha};
#[doc(inline)]
pub use lchuv::{Lchuv, Lchuva};
#[doc(inline)]
pub use luma::{GammaLuma, GammaLumaa, LinLuma, LinLumaa, SrgbLuma, SrgbLumaa};
#[doc(inline)]
pub use luv::{Luv, Luva};
#[doc(inline)]
pub use okhsl::{Okhsl, Okhsla};
#[doc(inline)]
pub use okhsv::{Okhsv, Okhsva};
#[doc(inline)]
pub use okhwb::{Okhwb, Okhwba};
#[doc(inline)]
pub use oklab::{Oklab, Oklaba};
#[doc(inline)]
pub use oklch::{Oklch, Oklcha};
#[doc(inline)]
pub use rgb::{GammaSrgb, GammaSrgba, LinSrgb, LinSrgba, Srgb, Srgba};
#[doc(inline)]
pub use xyz::{Xyz, Xyza};
#[doc(inline)]
pub use yxy::{Yxy, Yxya};
#[doc(inline)]
pub use hues::{LabHue, LuvHue, OklabHue, RgbHue};
#[allow(deprecated)]
pub use color_difference::ColorDifference;
pub use convert::{FromColor, FromColorMut, FromColorMutGuard, IntoColor, IntoColorMut};
pub use matrix::Mat3;
#[allow(deprecated)]
pub use relative_contrast::{contrast_ratio, RelativeContrast};
#[macro_use]
mod macros;
#[cfg(feature = "named")]
pub mod named;
#[cfg(feature = "random")]
mod random_sampling;
#[cfg(feature = "serializing")]
pub mod serde;
pub mod alpha;
pub mod angle;
pub mod blend;
pub mod bool_mask;
pub mod cam16;
pub mod cast;
pub mod chromatic_adaptation;
pub mod color_difference;
pub mod color_theory;
pub mod convert;
pub mod encoding;
pub mod hsl;
pub mod hsluv;
pub mod hsv;
pub mod hues;
pub mod hwb;
pub mod lab;
pub mod lch;
pub mod lchuv;
pub mod luma;
pub mod luv;
mod luv_bounds;
pub mod num;
mod ok_utils;
pub mod okhsl;
pub mod okhsv;
pub mod okhwb;
pub mod oklab;
pub mod oklch;
mod relative_contrast;
pub mod rgb;
pub mod stimulus;
pub mod white_point;
pub mod xyz;
pub mod yxy;
#[cfg(test)]
#[cfg(feature = "approx")]
mod visual;
#[doc(hidden)]
pub mod matrix;
#[inline]
fn clamp<T: num::Clamp>(value: T, min: T, max: T) -> T {
value.clamp(min, max)
}
#[inline]
fn clamp_assign<T: num::ClampAssign>(value: &mut T, min: T, max: T) {
value.clamp_assign(min, max);
}
#[inline]
fn clamp_min<T: num::Clamp>(value: T, min: T) -> T {
value.clamp_min(min)
}
#[inline]
fn clamp_min_assign<T: num::ClampAssign>(value: &mut T, min: T) {
value.clamp_min_assign(min);
}
/// Checks if color components are within their expected range bounds.
///
/// A color with out-of-bounds components may be clamped with [`Clamp`] or
/// [`ClampAssign`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds};
/// let a = Srgb::new(0.4f32, 0.3, 0.8);
/// let b = Srgb::new(1.2f32, 0.3, 0.8);
/// let c = Srgb::new(-0.6f32, 0.3, 0.8);
///
/// assert!(a.is_within_bounds());
/// assert!(!b.is_within_bounds());
/// assert!(!c.is_within_bounds());
/// ```
///
/// `IsWithinBounds` is also implemented for `[T]`:
///
/// ```
/// use palette::{Srgb, IsWithinBounds};
///
/// let my_vec = vec![Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(0.8, 0.5, 0.1)];
/// let my_array = [Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let my_slice = &[Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(1.2, 0.3, 0.8)];
///
/// assert!(my_vec.is_within_bounds());
/// assert!(!my_array.is_within_bounds());
/// assert!(!my_slice.is_within_bounds());
/// ```
pub trait IsWithinBounds: HasBoolMask {
/// Check if the color's components are within the expected range bounds.
///
/// ```
/// use palette::{Srgb, IsWithinBounds};
/// assert!(Srgb::new(0.8f32, 0.5, 0.2).is_within_bounds());
/// assert!(!Srgb::new(1.3f32, 0.5, -3.0).is_within_bounds());
/// ```
fn is_within_bounds(&self) -> Self::Mask;
}
impl<T> IsWithinBounds for [T]
where
T: IsWithinBounds,
T::Mask: BoolMask + BitAndAssign,
{
#[inline]
fn is_within_bounds(&self) -> Self::Mask {
let mut result = Self::Mask::from_bool(true);
for item in self {
result &= item.is_within_bounds();
if result.is_false() {
break;
}
}
result
}
}
/// An operator for restricting a color's components to their expected ranges.
///
/// [`IsWithinBounds`] can be used to check if the components are within their
/// range bounds.
///
/// See also [`ClampAssign`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds, Clamp};
///
/// let unclamped = Srgb::new(1.3f32, 0.5, -3.0);
/// assert!(!unclamped.is_within_bounds());
///
/// let clamped = unclamped.clamp();
/// assert!(clamped.is_within_bounds());
/// assert_eq!(clamped, Srgb::new(1.0, 0.5, 0.0));
/// ```
pub trait Clamp {
/// Return a new color where out-of-bounds components have been changed to
/// the nearest valid values.
///
/// ```
/// use palette::{Srgb, Clamp};
/// assert_eq!(Srgb::new(1.3, 0.5, -3.0).clamp(), Srgb::new(1.0, 0.5, 0.0));
/// ```
#[must_use]
fn clamp(self) -> Self;
}
/// An assigning operator for restricting a color's components to their expected
/// ranges.
///
/// [`IsWithinBounds`] can be used to check if the components are within their
/// range bounds.
///
/// See also [`Clamp`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds, ClampAssign};
///
/// let mut color = Srgb::new(1.3f32, 0.5, -3.0);
/// assert!(!color.is_within_bounds());
///
/// color.clamp_assign();
/// assert!(color.is_within_bounds());
/// assert_eq!(color, Srgb::new(1.0, 0.5, 0.0));
/// ```
///
/// `ClampAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Srgb, ClampAssign};
///
/// let mut my_vec = vec![Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let mut my_array = [Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let mut my_slice = &mut [Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.2, 0.3, 0.8)];
///
/// my_vec.clamp_assign();
/// my_array.clamp_assign();
/// my_slice.clamp_assign();
/// ```
pub trait ClampAssign {
/// Changes out-of-bounds components to the nearest valid values.
///
/// ```
/// use palette::{Srgb, ClampAssign};
///
/// let mut color = Srgb::new(1.3, 0.5, -3.0);
/// color.clamp_assign();
/// assert_eq!(color, Srgb::new(1.0, 0.5, 0.0));
/// ```
fn clamp_assign(&mut self);
}
impl<T> ClampAssign for [T]
where
T: ClampAssign,
{
#[inline]
fn clamp_assign(&mut self) {
self.iter_mut().for_each(T::clamp_assign);
}
}
/// Linear color interpolation of two colors.
///
/// See also [`MixAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{LinSrgb, Mix};
///
/// let a = LinSrgb::new(0.0, 0.5, 1.0);
/// let b = LinSrgb::new(1.0, 0.5, 0.0);
///
/// assert_relative_eq!(a.mix(b, 0.0), a);
/// assert_relative_eq!(a.mix(b, 0.5), LinSrgb::new(0.5, 0.5, 0.5));
/// assert_relative_eq!(a.mix(b, 1.0), b);
/// ```
pub trait Mix {
/// The type of the mixing factor.
type Scalar;
/// Mix the color with an other color, by `factor`.
///
/// `factor` should be between `0.0` and `1.0`, where `0.0` will result in
/// the same color as `self` and `1.0` will result in the same color as
/// `other`.
#[must_use]
fn mix(self, other: Self, factor: Self::Scalar) -> Self;
}
/// Assigning linear color interpolation of two colors.
///
/// See also [`Mix`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{LinSrgb, MixAssign};
///
/// let mut a = LinSrgb::new(0.0, 0.5, 1.0);
/// let b = LinSrgb::new(1.0, 0.5, 0.0);
///
/// a.mix_assign(b, 0.5);
/// assert_relative_eq!(a, LinSrgb::new(0.5, 0.5, 0.5));
/// ```
pub trait MixAssign {
/// The type of the mixing factor.
type Scalar;
/// Mix the color with an other color, by `factor`.
///
/// `factor` should be between `0.0` and `1.0`, where `0.0` will result in
/// the same color as `self` and `1.0` will result in the same color as
/// `other`.
fn mix_assign(&mut self, other: Self, factor: Self::Scalar);
}
/// Operators for lightening a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`lighten`](Lighten::lighten), scales the lightness
/// towards the maximum lightness value. This means that for a color with 50%
/// lightness, if `lighten(0.5)` is applied to it, the color will scale halfway
/// to the maximum value of 100% resulting in a new lightness value of 75%.
///
/// The fixed or absolute function, [`lighten_fixed`](Lighten::lighten_fixed),
/// increase the lightness value by an amount that is independent of the current
/// lightness of the color. So for a color with 50% lightness, if
/// `lighten_fixed(0.5)` is applied to it, the color will have 50% lightness
/// added to its lightness value resulting in a new value of 100%.
///
/// See also [`LightenAssign`], [`Darken`] and [`DarkenAssign`].
pub trait Lighten {
/// The type of the lighten modifier.
type Scalar;
/// Scale the color towards the maximum lightness by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, Lighten};
///
/// let color = Hsl::new_srgb(0.0, 1.0, 0.5);
/// assert_relative_eq!(color.lighten(0.5).lightness, 0.75);
/// ```
#[must_use]
fn lighten(self, factor: Self::Scalar) -> Self;
/// Lighten the color by `amount`, a value ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, Lighten};
///
/// let color = Hsl::new_srgb(0.0, 1.0, 0.4);
/// assert_relative_eq!(color.lighten_fixed(0.2).lightness, 0.6);
/// ```
#[must_use]
fn lighten_fixed(self, amount: Self::Scalar) -> Self;
}
/// Assigning operators for lightening a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`lighten_assign`](LightenAssign::lighten_assign),
/// scales the lightness towards the maximum lightness value. This means that
/// for a color with 50% lightness, if `lighten_assign(0.5)` is applied to it,
/// the color will scale halfway to the maximum value of 100% resulting in a new
/// lightness value of 75%.
///
/// The fixed or absolute function,
/// [`lighten_fixed_assign`](LightenAssign::lighten_fixed_assign), increase the
/// lightness value by an amount that is independent of the current lightness of
/// the color. So for a color with 50% lightness, if `lighten_fixed_assign(0.5)`
/// is applied to it, the color will have 50% lightness added to its lightness
/// value resulting in a new value of 100%.
///
/// `LightenAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, LightenAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.lighten_assign(0.5);
/// my_array.lighten_assign(0.5);
/// my_slice.lighten_assign(0.5);
/// ```
///
/// See also [`Lighten`], [`Darken`] and [`DarkenAssign`].
pub trait LightenAssign {
/// The type of the lighten modifier.
type Scalar;
/// Scale the color towards the maximum lightness by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, LightenAssign};
///
/// let mut color = Hsl::new_srgb(0.0, 1.0, 0.5);
/// color.lighten_assign(0.5);
/// assert_relative_eq!(color.lightness, 0.75);
/// ```
fn lighten_assign(&mut self, factor: Self::Scalar);
/// Lighten the color by `amount`, a value ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, LightenAssign};
///
/// let mut color = Hsl::new_srgb(0.0, 1.0, 0.4);
/// color.lighten_fixed_assign(0.2);
/// assert_relative_eq!(color.lightness, 0.6);
/// ```
fn lighten_fixed_assign(&mut self, amount: Self::Scalar);
}
impl<T> LightenAssign for [T]
where
T: LightenAssign,
T::Scalar: Clone,
{
type Scalar = T::Scalar;
#[inline]
fn lighten_assign(&mut self, factor: Self::Scalar) {
for color in self {
color.lighten_assign(factor.clone());
}
}
#[inline]
fn lighten_fixed_assign(&mut self, amount: Self::Scalar) {
for color in self {
color.lighten_fixed_assign(amount.clone());
}
}
}
/// Operators for darkening a color;
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`darken`](Darken::darken), scales the lightness
/// towards the minimum lightness value. This means that for a color with 50%
/// lightness, if `darken(0.5)` is applied to it, the color will scale halfway
/// to the minimum value of 0% resulting in a new lightness value of 25%.
///
/// The fixed or absolute function, [`darken_fixed`](Darken::darken_fixed),
/// decreases the lightness value by an amount that is independent of the
/// current lightness of the color. So for a color with 50% lightness, if
/// `darken_fixed(0.5)` is applied to it, the color will have 50% lightness
/// removed from its lightness value resulting in a new value of 0%.
///
/// See also [`DarkenAssign`], [`Lighten`] and [`LightenAssign`].
pub trait Darken {
/// The type of the darken modifier.
type Scalar;
/// Scale the color towards the minimum lightness by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Darken};
///
/// let color = Hsv::new_srgb(0.0, 1.0, 0.5);
/// assert_relative_eq!(color.darken(0.5).value, 0.25);
/// ```
#[must_use]
fn darken(self, factor: Self::Scalar) -> Self;
/// Darken the color by `amount`, a value ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Darken};
///
/// let color = Hsv::new_srgb(0.0, 1.0, 0.4);
/// assert_relative_eq!(color.darken_fixed(0.2).value, 0.2);
/// ```
#[must_use]
fn darken_fixed(self, amount: Self::Scalar) -> Self;
}
impl<T> Darken for T
where
T: Lighten,
T::Scalar: Neg<Output = T::Scalar>,
{
type Scalar = T::Scalar;
#[inline]
fn darken(self, factor: Self::Scalar) -> Self {
self.lighten(-factor)
}
#[inline]
fn darken_fixed(self, amount: Self::Scalar) -> Self {
self.lighten_fixed(-amount)
}
}
/// Assigning operators for darkening a color;
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`darken_assign`](DarkenAssign::darken_assign),
/// scales the lightness towards the minimum lightness value. This means that
/// for a color with 50% lightness, if `darken_assign(0.5)` is applied to it,
/// the color will scale halfway to the minimum value of 0% resulting in a new
/// lightness value of 25%.
///
/// The fixed or absolute function,
/// [`darken_fixed_assign`](DarkenAssign::darken_fixed_assign), decreases the
/// lightness value by an amount that is independent of the current lightness of
/// the color. So for a color with 50% lightness, if `darken_fixed_assign(0.5)`
/// is applied to it, the color will have 50% lightness removed from its
/// lightness value resulting in a new value of 0%.
///
/// `DarkenAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, DarkenAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.darken_assign(0.5);
/// my_array.darken_assign(0.5);
/// my_slice.darken_assign(0.5);
/// ```
///
/// See also [`Darken`], [`Lighten`] and [`LightenAssign`].
pub trait DarkenAssign {
/// The type of the darken modifier.
type Scalar;
/// Scale the color towards the minimum lightness by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DarkenAssign};
///
/// let mut color = Hsv::new_srgb(0.0, 1.0, 0.5);
/// color.darken_assign(0.5);
/// assert_relative_eq!(color.value, 0.25);
/// ```
fn darken_assign(&mut self, factor: Self::Scalar);
/// Darken the color by `amount`, a value ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DarkenAssign};
///
/// let mut color = Hsv::new_srgb(0.0, 1.0, 0.4);
/// color.darken_fixed_assign(0.2);
/// assert_relative_eq!(color.value, 0.2);
/// ```
fn darken_fixed_assign(&mut self, amount: Self::Scalar);
}
impl<T> DarkenAssign for T
where
T: LightenAssign + ?Sized,
T::Scalar: Neg<Output = T::Scalar>,
{
type Scalar = T::Scalar;
#[inline]
fn darken_assign(&mut self, factor: Self::Scalar) {
self.lighten_assign(-factor);
}
#[inline]
fn darken_fixed_assign(&mut self, amount: Self::Scalar) {
self.lighten_fixed_assign(-amount);
}
}
/// A trait for colors where a hue may be calculated.
///
/// See also [`WithHue`], [`SetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{GetHue, LinSrgb};
///
/// let red = LinSrgb::new(1.0f32, 0.0, 0.0);
/// let green = LinSrgb::new(0.0f32, 1.0, 0.0);
/// let blue = LinSrgb::new(0.0f32, 0.0, 1.0);
/// let gray = LinSrgb::new(0.5f32, 0.5, 0.5);
///
/// assert_relative_eq!(red.get_hue(), 0.0.into());
/// assert_relative_eq!(green.get_hue(), 120.0.into());
/// assert_relative_eq!(blue.get_hue(), 240.0.into());
/// assert_relative_eq!(gray.get_hue(), 0.0.into());
/// ```
pub trait GetHue {
/// The kind of hue unit this color space uses.
///
/// The hue is most commonly calculated as an angle around a color circle
/// and may not always be uniform between color spaces. It's therefore not
/// recommended to take one type of hue and apply it to a color space that
/// expects an other.
type Hue;
/// Calculate a hue if possible.
///
/// Colors in the gray scale has no well defined hue and should preferably
/// return `0`.
#[must_use]
fn get_hue(&self) -> Self::Hue;
}
/// Change the hue of a color to a specific value.
///
/// See also [`SetHue`], [`GetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use palette::{Hsl, WithHue};
///
/// let green = Hsl::new_srgb(120.0, 1.0, 0.5);
/// let blue = green.with_hue(240.0);
/// assert_eq!(blue, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
pub trait WithHue<H> {
/// Return a copy of `self` with a specific hue.
#[must_use]
fn with_hue(self, hue: H) -> Self;
}
/// Change the hue of a color to a specific value without moving.
///
/// See also [`WithHue`], [`GetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use palette::{Hsl, SetHue};
///
/// let mut color = Hsl::new_srgb(120.0, 1.0, 0.5);
/// color.set_hue(240.0);
/// assert_eq!(color, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
///
/// `SetHue` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, SetHue};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.set_hue(120.0);
/// my_array.set_hue(120.0);
/// my_slice.set_hue(120.0);
/// ```
pub trait SetHue<H> {
/// Change the hue to a specific value.
fn set_hue(&mut self, hue: H);
}
impl<T, H> SetHue<H> for [T]
where
T: SetHue<H>,
H: Clone,
{
fn set_hue(&mut self, hue: H) {
for color in self {
color.set_hue(hue.clone());
}
}
}
/// Operator for increasing or decreasing the hue by an amount.
///
/// See also [`ShiftHueAssign`], [`WithHue`], [`SetHue`] and [`GetHue`].
///
/// ```
/// use palette::{Hsl, ShiftHue};
///
/// let green = Hsl::new_srgb(120.0, 1.0, 0.5);
/// let blue = green.shift_hue(120.0);
/// assert_eq!(blue, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
pub trait ShiftHue {
/// The type of the hue modifier.
type Scalar;
/// Return a copy of `self` with the hue shifted by `amount`.
#[must_use]
fn shift_hue(self, amount: Self::Scalar) -> Self;
}
/// Assigning operator for increasing or decreasing the hue by an amount.
///
/// See also [`ShiftHue`], [`WithHue`], [`SetHue`] and [`GetHue`].
///
/// ```
/// use palette::{Hsl, ShiftHueAssign};
///
/// let mut color = Hsl::new_srgb(120.0, 1.0, 0.5);
/// color.shift_hue_assign(120.0);
/// assert_eq!(color, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
///
/// `ShiftHueAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, ShiftHueAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.shift_hue_assign(120.0);
/// my_array.shift_hue_assign(120.0);
/// my_slice.shift_hue_assign(120.0);
/// ```
pub trait ShiftHueAssign {
/// The type of the hue modifier.
type Scalar;
/// Shifts the hue by `amount`.
fn shift_hue_assign(&mut self, amount: Self::Scalar);
}
impl<T> ShiftHueAssign for [T]
where
T: ShiftHueAssign,
T::Scalar: Clone,
{
type Scalar = T::Scalar;
fn shift_hue_assign(&mut self, amount: Self::Scalar) {
for color in self {
color.shift_hue_assign(amount.clone());
}
}
}
/// Operator for increasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`saturate`](Saturate::saturate), scales the
/// saturation towards the maximum saturation value. This means that for a color
/// with 50% saturation, if `saturate(0.5)` is applied to it, the color will
/// scale halfway to the maximum value of 100% resulting in a new saturation
/// value of 75%.
///
/// The fixed or absolute function,
/// [`saturate_fixed`](Saturate::saturate_fixed), increases the saturation by an
/// amount that is independent of the current saturation of the color. So for a
/// color with 50% saturation, if `saturate_fixed(0.5)` is applied to it, the
/// color will have 50% saturation added to its saturation value resulting in a
/// new value of 100%.
///
/// See also [`SaturateAssign`], [`Desaturate`] and [`DesaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Saturate};
///
/// let a = Hsv::new_srgb(0.0, 0.5, 1.0);
///
/// assert_relative_eq!(a.saturate(0.5).saturation, 0.75);
/// assert_relative_eq!(a.saturate_fixed(0.5).saturation, 1.0);
/// ```
pub trait Saturate {
/// The type of the saturation modifier.
type Scalar;
/// Scale the color towards the maximum saturation by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, Saturate};
///
/// let color = Hsl::new_srgb(0.0, 0.5, 0.5);
/// assert_relative_eq!(color.saturate(0.5).saturation, 0.75);
/// ```
#[must_use]
fn saturate(self, factor: Self::Scalar) -> Self;
/// Increase the saturation by `amount`, a value ranging from `0.0` to
/// `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, Saturate};
///
/// let color = Hsl::new_srgb(0.0, 0.4, 0.5);
/// assert_relative_eq!(color.saturate_fixed(0.2).saturation, 0.6);
/// ```
#[must_use]
fn saturate_fixed(self, amount: Self::Scalar) -> Self;
}
/// Assigning operator for increasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`saturate_assign`](SaturateAssign::saturate_assign),
/// scales the saturation towards the maximum saturation value. This means that
/// for a color with 50% saturation, if `saturate_assign(0.5)` is applied to it,
/// the color will scale halfway to the maximum value of 100% resulting in a new
/// saturation value of 75%.
///
/// The fixed or absolute function,
/// [`saturate_fixed_assign`](SaturateAssign::saturate_fixed_assign), increases
/// the saturation by an amount that is independent of the current saturation of
/// the color. So for a color with 50% saturation, if
/// `saturate_fixed_assign(0.5)` is applied to it, the color will have 50%
/// saturation added to its saturation value resulting in a new value of 100%.
///
/// See also [`Saturate`], [`Desaturate`] and [`DesaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, SaturateAssign};
///
/// let mut relative = Hsv::new_srgb(0.0, 0.5, 1.0);
/// relative.saturate_assign(0.5);
///
/// let mut fixed = Hsv::new_srgb(0.0, 0.5, 1.0);
/// fixed.saturate_fixed_assign(0.5);
///
/// assert_relative_eq!(relative.saturation, 0.75);
/// assert_relative_eq!(fixed.saturation, 1.0);
/// ```
///
/// `SaturateAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, SaturateAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.saturate_assign(0.5);
/// my_array.saturate_assign(0.5);
/// my_slice.saturate_assign(0.5);
/// ```
pub trait SaturateAssign {
/// The type of the saturation modifier.
type Scalar;
/// Scale the color towards the maximum saturation by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, SaturateAssign};
///
/// let mut color = Hsl::new_srgb(0.0, 0.5, 0.5);
/// color.saturate_assign(0.5);
/// assert_relative_eq!(color.saturation, 0.75);
/// ```
fn saturate_assign(&mut self, factor: Self::Scalar);
/// Increase the saturation by `amount`, a value ranging from `0.0` to
/// `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsl, SaturateAssign};
///
/// let mut color = Hsl::new_srgb(0.0, 0.4, 0.5);
/// color.saturate_fixed_assign(0.2);
/// assert_relative_eq!(color.saturation, 0.6);
/// ```
fn saturate_fixed_assign(&mut self, amount: Self::Scalar);
}
impl<T> SaturateAssign for [T]
where
T: SaturateAssign,
T::Scalar: Clone,
{
type Scalar = T::Scalar;
fn saturate_assign(&mut self, factor: Self::Scalar) {
for color in self {
color.saturate_assign(factor.clone());
}
}
fn saturate_fixed_assign(&mut self, amount: Self::Scalar) {
for color in self {
color.saturate_fixed_assign(amount.clone());
}
}
}
/// Operator for decreasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`desaturate`](Desaturate::desaturate), scales the
/// saturation towards the minimum saturation value. This means that for a color
/// with 50% saturation, if `desaturate(0.5)` is applied to it, the color will
/// scale halfway to the minimum value of 0% resulting in a new saturation value
/// of 25%.
///
/// The fixed or absolute function,
/// [`desaturate_fixed`](Desaturate::desaturate_fixed), decreases the saturation
/// by an amount that is independent of the current saturation of the color. So
/// for a color with 50% saturation, if `desaturate_fixed(0.5)` is applied to
/// it, the color will have 50% saturation removed from its saturation value
/// resulting in a new value of 0%.
///
/// See also [`DesaturateAssign`], [`Saturate`] and [`SaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Desaturate};
///
/// let a = Hsv::new_srgb(0.0, 0.5, 1.0);
///
/// assert_relative_eq!(a.desaturate(0.5).saturation, 0.25);
/// assert_relative_eq!(a.desaturate_fixed(0.5).saturation, 0.0);
/// ```
pub trait Desaturate {
/// The type of the desaturation modifier.
type Scalar;
/// Scale the color towards the minimum saturation by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Desaturate};
///
/// let color = Hsv::new_srgb(0.0, 0.5, 0.5);
/// assert_relative_eq!(color.desaturate(0.5).saturation, 0.25);
/// ```
#[must_use]
fn desaturate(self, factor: Self::Scalar) -> Self;
/// Increase the saturation by `amount`, a value ranging from `0.0` to
/// `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Desaturate};
///
/// let color = Hsv::new_srgb(0.0, 0.4, 0.5);
/// assert_relative_eq!(color.desaturate_fixed(0.2).saturation, 0.2);
/// ```
#[must_use]
fn desaturate_fixed(self, amount: Self::Scalar) -> Self;
}
impl<T> Desaturate for T
where
T: Saturate,
T::Scalar: Neg<Output = T::Scalar>,
{
type Scalar = T::Scalar;
#[inline]
fn desaturate(self, factor: Self::Scalar) -> Self {
self.saturate(-factor)
}
#[inline]
fn desaturate_fixed(self, amount: Self::Scalar) -> Self {
self.saturate_fixed(-amount)
}
}
/// Assigning operator for decreasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function,
/// [`desaturate_assign`](DesaturateAssign::desaturate_assign), scales the
/// saturation towards the minimum saturation value. This means that for a color
/// with 50% saturation, if `desaturate_assign(0.5)` is applied to it, the color
/// will scale halfway to the minimum value of 0% resulting in a new saturation
/// value of 25%.
///
/// The fixed or absolute function,
/// [`desaturate_fixed_assign`](DesaturateAssign::desaturate_fixed_assign),
/// decreases the saturation by an amount that is independent of the current
/// saturation of the color. So for a color with 50% saturation, if
/// `desaturate_fixed_assign(0.5)` is applied to it, the color will have 50%
/// saturation removed from its saturation value resulting in a new value of 0%.
///
/// See also [`Desaturate`], [`Saturate`] and [`SaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DesaturateAssign};
///
/// let mut relative = Hsv::new_srgb(0.0, 0.5, 1.0);
/// relative.desaturate_assign(0.5);
///
/// let mut fixed = Hsv::new_srgb(0.0, 0.5, 1.0);
/// fixed.desaturate_fixed_assign(0.5);
///
/// assert_relative_eq!(relative.saturation, 0.25);
/// assert_relative_eq!(fixed.saturation, 0.0);
/// ```
///
/// `DesaturateAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, DesaturateAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.desaturate_assign(0.5);
/// my_array.desaturate_assign(0.5);
/// my_slice.desaturate_assign(0.5);
/// ```
pub trait DesaturateAssign {
/// The type of the desaturation modifier.
type Scalar;
/// Scale the color towards the minimum saturation by `factor`, a value
/// ranging from `0.0` to `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DesaturateAssign};
///
/// let mut color = Hsv::new_srgb(0.0, 0.5, 0.5);
/// color.desaturate_assign(0.5);
/// assert_relative_eq!(color.saturation, 0.25);
/// ```
fn desaturate_assign(&mut self, factor: Self::Scalar);
/// Increase the saturation by `amount`, a value ranging from `0.0` to
/// `1.0`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DesaturateAssign};
///
/// let mut color = Hsv::new_srgb(0.0, 0.4, 0.5);
/// color.desaturate_fixed_assign(0.2);
/// assert_relative_eq!(color.saturation, 0.2);
/// ```
fn desaturate_fixed_assign(&mut self, amount: Self::Scalar);
}
impl<T> DesaturateAssign for T
where
T: SaturateAssign + ?Sized,
T::Scalar: Neg<Output = T::Scalar>,
{
type Scalar = T::Scalar;
#[inline]
fn desaturate_assign(&mut self, factor: Self::Scalar) {
self.saturate_assign(-factor);
}
#[inline]
fn desaturate_fixed_assign(&mut self, amount: Self::Scalar) {
self.saturate_fixed_assign(-amount);
}
}
/// Extension trait for fixed size arrays.
///
/// ## Safety
///
/// * `Item` must be the type of the array's items (eg: `T` in `[T; N]`).
/// * `LENGTH` must be the length of the array (eg: `N` in `[T; N]`).
pub unsafe trait ArrayExt {
/// The type of the array's items.
type Item;
/// The number of items in the array.
const LENGTH: usize;
}
unsafe impl<T, const N: usize> ArrayExt for [T; N] {
type Item = T;
const LENGTH: usize = N;
}
/// Temporary helper trait for getting an array type of size `N + 1`.
///
/// ## Safety
///
/// * `Next` must have the same item type as `Self`.
/// * `Next` must be one item longer than `Self`.
pub unsafe trait NextArray {
/// An array of size `N + 1`.
type Next: ArrayExt;
}
macro_rules! impl_next_array {
($length: expr) => {};
($length: expr, $next_length: expr $(, $rest: expr)*) => {
unsafe impl<T> NextArray for [T; $length] {
type Next = [T; $next_length];
}
impl_next_array!($next_length $(, $rest)*);
};
}
impl_next_array!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
#[cfg(doctest)]
macro_rules! doctest {
($str: expr, $name: ident) => {
#[doc = $str]
mod $name {}
};
}
// Makes doctest run tests on README.md.
#[cfg(doctest)]
doctest!(include_str!("../README.md"), readme);