zune_jpeg/
bitstream.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
 * Copyright (c) 2023.
 *
 * This software is free software;
 *
 * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
 */

#![allow(
    clippy::if_not_else,
    clippy::similar_names,
    clippy::inline_always,
    clippy::doc_markdown,
    clippy::cast_sign_loss,
    clippy::cast_possible_truncation
)]

//! This file exposes a single struct that can decode a huffman encoded
//! Bitstream in a JPEG file
//!
//! This code is optimized for speed.
//! It's meant to be super duper super fast, because everyone else depends on this being fast.
//! It's (annoyingly) serial hence we cant use parallel bitstreams(it's variable length coding.)
//!
//! Furthermore, on the case of refills, we have to do bytewise processing because the standard decided
//! that we want to support markers in the middle of streams(seriously few people use RST markers).
//!
//! So we pull in all optimization steps:
//! - use `inline[always]`? ✅ ,
//! - pre-execute most common cases ✅,
//! - add random comments ✅
//! -  fast paths ✅.
//!
//! Speed-wise: It is probably the fastest JPEG BitStream decoder to ever sail the seven seas because of
//! a couple of optimization tricks.
//! 1. Fast refills from libjpeg-turbo
//! 2. As few as possible branches in decoder fast paths.
//! 3. Accelerated AC table decoding borrowed from stb_image.h written by Fabian Gissen (@ rygorous),
//! improved by me to handle more cases.
//! 4. Safe and extensible routines(e.g. cool ways to eliminate bounds check)
//! 5. No unsafe here
//!
//! Readability comes as a second priority(I tried with variable names this time, and we are wayy better than libjpeg).
//!
//! Anyway if you are reading this it means your cool and I hope you get whatever part of the code you are looking for
//! (or learn something cool)
//!
//! Knock yourself out.
use alloc::format;
use alloc::string::ToString;
use core::cmp::min;

use zune_core::bytestream::{ZByteReader, ZReaderTrait};

use crate::errors::DecodeErrors;
use crate::huffman::{HuffmanTable, HUFF_LOOKAHEAD};
use crate::marker::Marker;
use crate::mcu::DCT_BLOCK;
use crate::misc::UN_ZIGZAG;

macro_rules! decode_huff {
    ($stream:tt,$symbol:tt,$table:tt) => {
        let mut code_length = $symbol >> HUFF_LOOKAHEAD;

        ($symbol) &= (1 << HUFF_LOOKAHEAD) - 1;

        if code_length > i32::from(HUFF_LOOKAHEAD)
        {
            // if the symbol cannot be resolved in the first HUFF_LOOKAHEAD bits,
            // we know it lies somewhere between HUFF_LOOKAHEAD and 16 bits since jpeg imposes 16 bit
            // limit, we can therefore look 16 bits ahead and try to resolve the symbol
            // starting from 1+HUFF_LOOKAHEAD bits.
            $symbol = ($stream).peek_bits::<16>() as i32;
            // (Credits to Sean T. Barrett stb library for this optimization)
            // maxcode is pre-shifted 16 bytes long so that it has (16-code_length)
            // zeroes at the end hence we do not need to shift in the inner loop.
            while code_length < 17{
                if $symbol < $table.maxcode[code_length as usize]  {
                    break;
                }
                code_length += 1;
            }

            if code_length == 17{
                // symbol could not be decoded.
                //
                // We may think, lets fake zeroes, noo
                // panic, because Huffman codes are sensitive, probably everything
                // after this will be corrupt, so no need to continue.
                return Err(DecodeErrors::Format(format!("Bad Huffman Code 0x{:X}, corrupt JPEG",$symbol)))
            }

            $symbol >>= (16-code_length);
            ($symbol) = i32::from(
                ($table).values
                    [(($symbol + ($table).offset[code_length as usize]) & 0xFF) as usize],
            );
        }
        // drop bits read
        ($stream).drop_bits(code_length as u8);
    };
}

/// A `BitStream` struct, a bit by bit reader with super powers
///
pub(crate) struct BitStream {
    /// A MSB type buffer that is used for some certain operations
    pub buffer:           u64,
    /// A TOP  aligned MSB type buffer that is used to accelerate some operations like
    /// peek_bits and get_bits.
    ///
    /// By top aligned, I mean the top bit (63) represents the top bit in the buffer.
    aligned_buffer:       u64,
    /// Tell us the bits left the two buffer
    pub(crate) bits_left: u8,
    /// Did we find a marker(RST/EOF) during decoding?
    pub marker:           Option<Marker>,

    /// Progressive decoding
    pub successive_high: u8,
    pub successive_low:  u8,
    spec_start:          u8,
    spec_end:            u8,
    pub eob_run:         i32,
    pub overread_by:     usize
}

impl BitStream {
    /// Create a new BitStream
    pub(crate) const fn new() -> BitStream {
        BitStream {
            buffer:          0,
            aligned_buffer:  0,
            bits_left:       0,
            marker:          None,
            successive_high: 0,
            successive_low:  0,
            spec_start:      0,
            spec_end:        0,
            eob_run:         0,
            overread_by:     0
        }
    }

    /// Create a new Bitstream for progressive decoding
    #[allow(clippy::redundant_field_names)]
    pub(crate) fn new_progressive(ah: u8, al: u8, spec_start: u8, spec_end: u8) -> BitStream {
        BitStream {
            buffer:          0,
            aligned_buffer:  0,
            bits_left:       0,
            marker:          None,
            successive_high: ah,
            successive_low:  al,
            spec_start:      spec_start,
            spec_end:        spec_end,
            eob_run:         0,
            overread_by:     0
        }
    }

    /// Refill the bit buffer by (a maximum of) 32 bits
    ///
    /// # Arguments
    ///  - `reader`:`&mut BufReader<R>`: A mutable reference to an underlying
    ///    File/Memory buffer containing a valid JPEG stream
    ///
    /// This function will only refill if `self.count` is less than 32
    #[inline(always)] // to many call sites? ( perf improvement by 4%)
    fn refill<T>(&mut self, reader: &mut ZByteReader<T>) -> Result<bool, DecodeErrors>
    where
        T: ZReaderTrait
    {
        /// Macro version of a single byte refill.
        /// Arguments
        /// buffer-> our io buffer, because rust macros cannot get values from
        /// the surrounding environment bits_left-> number of bits left
        /// to full refill
        macro_rules! refill {
            ($buffer:expr,$byte:expr,$bits_left:expr) => {
                // read a byte from the stream
                $byte = u64::from(reader.get_u8());
                self.overread_by += usize::from(reader.eof());
                // append to the buffer
                // JPEG is a MSB type buffer so that means we append this
                // to the lower end (0..8) of the buffer and push the rest bits above..
                $buffer = ($buffer << 8) | $byte;
                // Increment bits left
                $bits_left += 8;
                // Check for special case  of OxFF, to see if it's a stream or a marker
                if $byte == 0xff {
                    // read next byte
                    let mut next_byte = u64::from(reader.get_u8());
                    // Byte snuffing, if we encounter byte snuff, we skip the byte
                    if next_byte != 0x00 {
                        // skip that byte we read
                        while next_byte == 0xFF {
                            next_byte = u64::from(reader.get_u8());
                        }

                        if next_byte != 0x00 {
                            // Undo the byte append and return
                            $buffer >>= 8;
                            $bits_left -= 8;

                            if $bits_left != 0 {
                                self.aligned_buffer = $buffer << (64 - $bits_left);
                            }

                            self.marker =
                                Some(Marker::from_u8(next_byte as u8).ok_or_else(|| {
                                    DecodeErrors::Format(format!(
                                        "Unknown marker 0xFF{:X}",
                                        next_byte
                                    ))
                                })?);
                            return Ok(false);
                        }
                    }
                }
            };
        }

        // 32 bits is enough for a decode(16 bits) and receive_extend(max 16 bits)
        // If we have less than 32 bits we refill
        if self.bits_left < 32 && self.marker.is_none() {
            // So before we do anything, check if we have a 0xFF byte

            if reader.has(4) {
                // we have 4 bytes to spare, read the 4 bytes into a temporary buffer
                // create buffer
                let msb_buf = reader.get_u32_be();
                // check if we have 0xff
                if !has_byte(msb_buf, 255) {
                    self.bits_left += 32;
                    self.buffer <<= 32;
                    self.buffer |= u64::from(msb_buf);
                    self.aligned_buffer = self.buffer << (64 - self.bits_left);
                    return Ok(true);
                }
                // not there, rewind the read
                reader.rewind(4);
            }
            // This serves two reasons,
            // 1: Make clippy shut up
            // 2: Favour register reuse
            let mut byte;

            // 4 refills, if all succeed the stream should contain enough bits to decode a
            // value
            refill!(self.buffer, byte, self.bits_left);
            refill!(self.buffer, byte, self.bits_left);
            refill!(self.buffer, byte, self.bits_left);
            refill!(self.buffer, byte, self.bits_left);
            // Construct an MSB buffer whose top bits are the bitstream we are currently holding.
            self.aligned_buffer = self.buffer << (64 - self.bits_left);
        }

        return Ok(true);
    }
    /// Decode the DC coefficient in a MCU block.
    ///
    /// The decoded coefficient is written to `dc_prediction`
    ///
    #[allow(
        clippy::cast_possible_truncation,
        clippy::cast_sign_loss,
        clippy::unwrap_used
    )]
    #[inline(always)]
    fn decode_dc<T>(
        &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, dc_prediction: &mut i32
    ) -> Result<bool, DecodeErrors>
    where
        T: ZReaderTrait
    {
        let (mut symbol, r);

        if self.bits_left < 32 {
            self.refill(reader)?;
        };
        // look a head HUFF_LOOKAHEAD bits into the bitstream
        symbol = self.peek_bits::<HUFF_LOOKAHEAD>();
        symbol = dc_table.lookup[symbol as usize];

        decode_huff!(self, symbol, dc_table);

        if symbol != 0 {
            r = self.get_bits(symbol as u8);
            symbol = huff_extend(r, symbol);
        }
        // Update DC prediction
        *dc_prediction = dc_prediction.wrapping_add(symbol);

        return Ok(true);
    }

    /// Decode a Minimum Code Unit(MCU) as quickly as possible
    ///
    /// # Arguments
    /// - reader: The bitstream from where we read more bits.
    /// - dc_table: The Huffman table used to decode the DC coefficient
    /// - ac_table: The Huffman table used to decode AC values
    /// - block: A memory region where we will write out the decoded values
    /// - DC prediction: Last DC value for this component
    ///
    #[allow(
        clippy::many_single_char_names,
        clippy::cast_possible_truncation,
        clippy::cast_sign_loss
    )]
    #[inline(never)]
    pub fn decode_mcu_block<T>(
        &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, ac_table: &HuffmanTable,
        qt_table: &[i32; DCT_BLOCK], block: &mut [i32; 64], dc_prediction: &mut i32
    ) -> Result<(), DecodeErrors>
    where
        T: ZReaderTrait
    {
        // Get fast AC table as a reference before we enter the hot path
        let ac_lookup = ac_table.ac_lookup.as_ref().unwrap();

        let (mut symbol, mut r, mut fast_ac);
        // Decode AC coefficients
        let mut pos: usize = 1;

        // decode DC, dc prediction will contain the value
        self.decode_dc(reader, dc_table, dc_prediction)?;

        // set dc to be the dc prediction.
        block[0] = *dc_prediction * qt_table[0];

        while pos < 64 {
            self.refill(reader)?;
            symbol = self.peek_bits::<HUFF_LOOKAHEAD>();
            fast_ac = ac_lookup[symbol as usize];
            symbol = ac_table.lookup[symbol as usize];

            if fast_ac != 0 {
                //  FAST AC path
                pos += ((fast_ac >> 4) & 15) as usize; // run
                let t_pos = UN_ZIGZAG[min(pos, 63)] & 63;

                block[t_pos] = i32::from(fast_ac >> 8) * (qt_table[t_pos]); // Value
                self.drop_bits((fast_ac & 15) as u8);
                pos += 1;
            } else {
                decode_huff!(self, symbol, ac_table);

                r = symbol >> 4;
                symbol &= 15;

                if symbol != 0 {
                    pos += r as usize;
                    r = self.get_bits(symbol as u8);
                    symbol = huff_extend(r, symbol);
                    let t_pos = UN_ZIGZAG[pos & 63] & 63;

                    block[t_pos] = symbol * qt_table[t_pos];

                    pos += 1;
                } else if r != 15 {
                    return Ok(());
                } else {
                    pos += 16;
                }
            }
        }
        return Ok(());
    }

    /// Peek `look_ahead` bits ahead without discarding them from the buffer
    #[inline(always)]
    #[allow(clippy::cast_possible_truncation)]
    const fn peek_bits<const LOOKAHEAD: u8>(&self) -> i32 {
        (self.aligned_buffer >> (64 - LOOKAHEAD)) as i32
    }

    /// Discard the next `N` bits without checking
    #[inline]
    fn drop_bits(&mut self, n: u8) {
        self.bits_left = self.bits_left.saturating_sub(n);
        self.aligned_buffer <<= n;
    }

    /// Read `n_bits` from the buffer  and discard them
    #[inline(always)]
    #[allow(clippy::cast_possible_truncation)]
    fn get_bits(&mut self, n_bits: u8) -> i32 {
        let mask = (1_u64 << n_bits) - 1;

        self.aligned_buffer = self.aligned_buffer.rotate_left(u32::from(n_bits));
        let bits = (self.aligned_buffer & mask) as i32;
        self.bits_left = self.bits_left.wrapping_sub(n_bits);
        bits
    }

    /// Decode a DC block
    #[allow(clippy::cast_possible_truncation)]
    #[inline]
    pub(crate) fn decode_prog_dc_first<T>(
        &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, block: &mut i16,
        dc_prediction: &mut i32
    ) -> Result<(), DecodeErrors>
    where
        T: ZReaderTrait
    {
        self.decode_dc(reader, dc_table, dc_prediction)?;
        *block = (*dc_prediction as i16).wrapping_mul(1_i16 << self.successive_low);
        return Ok(());
    }
    #[inline]
    pub(crate) fn decode_prog_dc_refine<T>(
        &mut self, reader: &mut ZByteReader<T>, block: &mut i16
    ) -> Result<(), DecodeErrors>
    where
        T: ZReaderTrait
    {
        // refinement scan
        if self.bits_left < 1 {
            self.refill(reader)?;
        }

        if self.get_bit() == 1 {
            *block = block.wrapping_add(1 << self.successive_low);
        }

        Ok(())
    }

    /// Get a single bit from the bitstream
    fn get_bit(&mut self) -> u8 {
        let k = (self.aligned_buffer >> 63) as u8;
        // discard a bit
        self.drop_bits(1);
        return k;
    }
    pub(crate) fn decode_mcu_ac_first<T>(
        &mut self, reader: &mut ZByteReader<T>, ac_table: &HuffmanTable, block: &mut [i16; 64]
    ) -> Result<bool, DecodeErrors>
    where
        T: ZReaderTrait
    {
        let shift = self.successive_low;
        let fast_ac = ac_table.ac_lookup.as_ref().unwrap();

        let mut k = self.spec_start as usize;
        let (mut symbol, mut r, mut fac);

        // EOB runs are handled in mcu_prog.rs
        'block: loop {
            self.refill(reader)?;

            symbol = self.peek_bits::<HUFF_LOOKAHEAD>();
            fac = fast_ac[symbol as usize];
            symbol = ac_table.lookup[symbol as usize];

            if fac != 0 {
                // fast ac path
                k += ((fac >> 4) & 15) as usize; // run
                block[UN_ZIGZAG[min(k, 63)] & 63] = (fac >> 8).wrapping_mul(1 << shift); // value
                self.drop_bits((fac & 15) as u8);
                k += 1;
            } else {
                decode_huff!(self, symbol, ac_table);

                r = symbol >> 4;
                symbol &= 15;

                if symbol != 0 {
                    k += r as usize;
                    r = self.get_bits(symbol as u8);
                    symbol = huff_extend(r, symbol);
                    block[UN_ZIGZAG[k & 63] & 63] = (symbol as i16).wrapping_mul(1 << shift);
                    k += 1;
                } else {
                    if r != 15 {
                        self.eob_run = 1 << r;
                        self.eob_run += self.get_bits(r as u8);
                        self.eob_run -= 1;
                        break;
                    }

                    k += 16;
                }
            }

            if k > self.spec_end as usize {
                break 'block;
            }
        }
        return Ok(true);
    }
    #[allow(clippy::too_many_lines, clippy::op_ref)]
    pub(crate) fn decode_mcu_ac_refine<T>(
        &mut self, reader: &mut ZByteReader<T>, table: &HuffmanTable, block: &mut [i16; 64]
    ) -> Result<bool, DecodeErrors>
    where
        T: ZReaderTrait
    {
        let bit = (1 << self.successive_low) as i16;

        let mut k = self.spec_start;
        let (mut symbol, mut r);

        if self.eob_run == 0 {
            'no_eob: loop {
                // Decode a coefficient from the bit stream
                self.refill(reader)?;

                symbol = self.peek_bits::<HUFF_LOOKAHEAD>();
                symbol = table.lookup[symbol as usize];

                decode_huff!(self, symbol, table);

                r = symbol >> 4;
                symbol &= 15;

                if symbol == 0 {
                    if r != 15 {
                        // EOB run is 2^r + bits
                        self.eob_run = 1 << r;
                        self.eob_run += self.get_bits(r as u8);
                        // EOB runs are handled by the eob logic
                        break 'no_eob;
                    }
                } else {
                    if symbol != 1 {
                        return Err(DecodeErrors::HuffmanDecode(
                            "Bad Huffman code, corrupt JPEG?".to_string()
                        ));
                    }
                    // get sign bit
                    // We assume we have enough bits, which should be correct for sane images
                    // since we refill by 32 above
                    if self.get_bit() == 1 {
                        symbol = i32::from(bit);
                    } else {
                        symbol = i32::from(-bit);
                    }
                }

                // Advance over already nonzero coefficients  appending
                // correction bits to the non-zeroes.
                // A correction bit is 1 if the absolute value of the coefficient must be increased

                if k <= self.spec_end {
                    'advance_nonzero: loop {
                        let coefficient = &mut block[UN_ZIGZAG[k as usize & 63] & 63];

                        if *coefficient != 0 {
                            if self.get_bit() == 1 && (*coefficient & bit) == 0 {
                                if *coefficient >= 0 {
                                    *coefficient += bit;
                                } else {
                                    *coefficient -= bit;
                                }
                            }

                            if self.bits_left < 1 {
                                self.refill(reader)?;
                            }
                        } else {
                            r -= 1;

                            if r < 0 {
                                // reached target zero coefficient.
                                break 'advance_nonzero;
                            }
                        };

                        if k == self.spec_end {
                            break 'advance_nonzero;
                        }

                        k += 1;
                    }
                }

                if symbol != 0 {
                    let pos = UN_ZIGZAG[k as usize & 63];
                    // output new non-zero coefficient.
                    block[pos & 63] = symbol as i16;
                }

                k += 1;

                if k > self.spec_end {
                    break 'no_eob;
                }
            }
        }
        if self.eob_run > 0 {
            // only run if block does not consists of purely zeroes
            if &block[1..] != &[0; 63] {
                self.refill(reader)?;

                while k <= self.spec_end {
                    let coefficient = &mut block[UN_ZIGZAG[k as usize & 63] & 63];

                    if *coefficient != 0 && self.get_bit() == 1 {
                        // check if we already modified it, if so do nothing, otherwise
                        // append the correction bit.
                        if (*coefficient & bit) == 0 {
                            if *coefficient >= 0 {
                                *coefficient = coefficient.wrapping_add(bit);
                            } else {
                                *coefficient = coefficient.wrapping_sub(bit);
                            }
                        }
                    }
                    if self.bits_left < 1 {
                        // refill at the last possible moment
                        self.refill(reader)?;
                    }
                    k += 1;
                }
            }
            // count a block completed in EOB run
            self.eob_run -= 1;
        }
        return Ok(true);
    }

    pub fn update_progressive_params(&mut self, ah: u8, al: u8, spec_start: u8, spec_end: u8) {
        self.successive_high = ah;
        self.successive_low = al;
        self.spec_start = spec_start;
        self.spec_end = spec_end;
    }

    /// Reset the stream if we have a restart marker
    ///
    /// Restart markers indicate drop those bits in the stream and zero out
    /// everything
    #[cold]
    pub fn reset(&mut self) {
        self.bits_left = 0;
        self.marker = None;
        self.buffer = 0;
        self.aligned_buffer = 0;
        self.eob_run = 0;
    }
}

/// Do the equivalent of JPEG HUFF_EXTEND
#[inline(always)]
fn huff_extend(x: i32, s: i32) -> i32 {
    // if x<s return x else return x+offset[s] where offset[s] = ( (-1<<s)+1)
    (x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((-1) << (s)) + 1))
}

fn has_zero(v: u32) -> bool {
    // Retrieved from Stanford bithacks
    // @ https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
    return !((((v & 0x7F7F_7F7F) + 0x7F7F_7F7F) | v) | 0x7F7F_7F7F) != 0;
}

fn has_byte(b: u32, val: u8) -> bool {
    // Retrieved from Stanford bithacks
    // @ https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
    has_zero(b ^ ((!0_u32 / 255) * u32::from(val)))
}