skrifa/outline/glyf/hint/value_stack.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
//! Value stack for TrueType interpreter.
//!
use raw::types::F26Dot6;
use read_fonts::tables::glyf::bytecode::InlineOperands;
use super::error::HintErrorKind;
use HintErrorKind::{ValueStackOverflow, ValueStackUnderflow};
/// Value stack for the TrueType interpreter.
///
/// This uses a slice as the backing store rather than a `Vec` to enable
/// support for allocation from user buffers.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#managing-the-stack>
pub struct ValueStack<'a> {
values: &'a mut [i32],
len: usize,
is_pedantic: bool,
}
impl<'a> ValueStack<'a> {
pub fn new(values: &'a mut [i32], is_pedantic: bool) -> Self {
Self {
values,
len: 0,
is_pedantic,
}
}
/// Returns the depth of the stack
/// <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#returns-the-depth-of-the-stack>
pub fn len(&self) -> usize {
self.len
}
#[cfg(test)]
fn is_empty(&self) -> bool {
self.len == 0
}
// This is used in tests and also useful for tracing.
#[allow(dead_code)]
pub fn values(&self) -> &[i32] {
&self.values[..self.len]
}
pub fn push(&mut self, value: i32) -> Result<(), HintErrorKind> {
let ptr = self
.values
.get_mut(self.len)
.ok_or(HintErrorKind::ValueStackOverflow)?;
*ptr = value;
self.len += 1;
Ok(())
}
/// Pushes values that have been decoded from the instruction stream
/// onto the stack.
///
/// Implements the PUSHB[], PUSHW[], NPUSHB[] and NPUSHW[] instructions.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#pushing-data-onto-the-interpreter-stack>
pub fn push_inline_operands(&mut self, operands: &InlineOperands) -> Result<(), HintErrorKind> {
let push_count = operands.len();
let stack_base = self.len;
for (stack_value, value) in self
.values
.get_mut(stack_base..stack_base + push_count)
.ok_or(ValueStackOverflow)?
.iter_mut()
.zip(operands.values())
{
*stack_value = value;
}
self.len += push_count;
Ok(())
}
pub fn peek(&mut self) -> Option<i32> {
if self.len > 0 {
self.values.get(self.len - 1).copied()
} else {
None
}
}
/// Pops a value from the stack.
///
/// Implements the POP[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#pop-top-stack-element>
pub fn pop(&mut self) -> Result<i32, HintErrorKind> {
if let Some(value) = self.peek() {
self.len -= 1;
Ok(value)
} else if self.is_pedantic {
Err(ValueStackUnderflow)
} else {
Ok(0)
}
}
/// Convenience method for instructions that expect values in 26.6 format.
pub fn pop_f26dot6(&mut self) -> Result<F26Dot6, HintErrorKind> {
Ok(F26Dot6::from_bits(self.pop()?))
}
/// Convenience method for instructions that pop values that are used as an
/// index.
pub fn pop_usize(&mut self) -> Result<usize, HintErrorKind> {
Ok(self.pop()? as usize)
}
/// Applies a unary operation.
///
/// Pops `a` from the stack and pushes `op(a)`.
pub fn apply_unary(
&mut self,
mut op: impl FnMut(i32) -> Result<i32, HintErrorKind>,
) -> Result<(), HintErrorKind> {
let a = self.pop()?;
self.push(op(a)?)
}
/// Applies a binary operation.
///
/// Pops `b` and `a` from the stack and pushes `op(a, b)`.
pub fn apply_binary(
&mut self,
mut op: impl FnMut(i32, i32) -> Result<i32, HintErrorKind>,
) -> Result<(), HintErrorKind> {
let b = self.pop()?;
let a = self.pop()?;
self.push(op(a, b)?)
}
/// Clear the entire stack.
///
/// Implements the CLEAR[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#clear-the-entire-stack>
pub fn clear(&mut self) {
self.len = 0;
}
/// Duplicate top stack element.
///
/// Implements the DUP[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#duplicate-top-stack-element>
pub fn dup(&mut self) -> Result<(), HintErrorKind> {
if let Some(value) = self.peek() {
self.push(value)
} else if self.is_pedantic {
Err(ValueStackUnderflow)
} else {
self.push(0)
}
}
/// Swap the top two elements on the stack.
///
/// Implements the SWAP[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#swap-the-top-two-elements-on-the-stack>
pub fn swap(&mut self) -> Result<(), HintErrorKind> {
let a = self.pop()?;
let b = self.pop()?;
self.push(a)?;
self.push(b)
}
/// Copy the indexed element to the top of the stack.
///
/// Implements the CINDEX[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#copy-the-indexed-element-to-the-top-of-the-stack>
pub fn copy_index(&mut self) -> Result<(), HintErrorKind> {
let top_ix = self.len.checked_sub(1).ok_or(ValueStackUnderflow)?;
let index = *self.values.get(top_ix).ok_or(ValueStackUnderflow)? as usize;
let element_ix = top_ix.checked_sub(index).ok_or(ValueStackUnderflow)?;
self.values[top_ix] = self.values[element_ix];
Ok(())
}
/// Moves the indexed element to the top of the stack.
///
/// Implements the MINDEX[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-the-indexed-element-to-the-top-of-the-stack>
pub fn move_index(&mut self) -> Result<(), HintErrorKind> {
let top_ix = self.len.checked_sub(1).ok_or(ValueStackUnderflow)?;
let index = *self.values.get(top_ix).ok_or(ValueStackUnderflow)? as usize;
let element_ix = top_ix.checked_sub(index).ok_or(ValueStackUnderflow)?;
let value = self.values[element_ix];
self.values
.copy_within(element_ix + 1..self.len, element_ix);
self.values[top_ix - 1] = value;
self.len -= 1;
Ok(())
}
/// Roll the top three stack elements.
///
/// Implements the ROLL[] instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#roll-the-top-three-stack-elements>
pub fn roll(&mut self) -> Result<(), HintErrorKind> {
let a = self.pop()?;
let b = self.pop()?;
let c = self.pop()?;
self.push(b)?;
self.push(a)?;
self.push(c)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::{HintErrorKind, ValueStack};
use read_fonts::tables::glyf::bytecode::MockInlineOperands;
// The following are macros because functions can't return a new ValueStack
// with a borrowed parameter.
macro_rules! make_stack {
($values:expr) => {
ValueStack {
values: $values,
len: $values.len(),
is_pedantic: true,
}
};
}
macro_rules! make_empty_stack {
($values:expr) => {
ValueStack {
values: $values,
len: 0,
is_pedantic: true,
}
};
}
#[test]
fn push() {
let mut stack = make_empty_stack!(&mut [0; 4]);
for i in 0..4 {
stack.push(i).unwrap();
assert_eq!(stack.peek(), Some(i));
}
assert!(matches!(
stack.push(0),
Err(HintErrorKind::ValueStackOverflow)
));
}
#[test]
fn push_args() {
let mut stack = make_empty_stack!(&mut [0; 32]);
let values = [-5, 2, 2845, 92, -26, 42, i16::MIN, i16::MAX];
let mock_args = MockInlineOperands::from_words(&values);
stack.push_inline_operands(&mock_args.operands()).unwrap();
let mut popped = vec![];
while !stack.is_empty() {
popped.push(stack.pop().unwrap());
}
assert!(values
.iter()
.rev()
.map(|x| *x as i32)
.eq(popped.iter().copied()));
}
#[test]
fn pop() {
let mut stack = make_stack!(&mut [0, 1, 2, 3]);
for i in (0..4).rev() {
assert_eq!(stack.pop().ok(), Some(i));
}
assert!(matches!(
stack.pop(),
Err(HintErrorKind::ValueStackUnderflow)
));
}
#[test]
fn dup() {
let mut stack = make_stack!(&mut [1, 2, 3, 0]);
// pop extra element so we have room for dup
stack.pop().unwrap();
stack.dup().unwrap();
assert_eq!(stack.values(), &[1, 2, 3, 3]);
}
#[test]
fn swap() {
let mut stack = make_stack!(&mut [1, 2, 3]);
stack.swap().unwrap();
assert_eq!(stack.values(), &[1, 3, 2]);
}
#[test]
fn copy_index() {
let mut stack = make_stack!(&mut [4, 10, 2, 1, 3]);
stack.copy_index().unwrap();
assert_eq!(stack.values(), &[4, 10, 2, 1, 10]);
}
#[test]
fn move_index() {
let mut stack = make_stack!(&mut [4, 10, 2, 1, 3]);
stack.move_index().unwrap();
assert_eq!(stack.values(), &[4, 2, 1, 10]);
}
#[test]
fn roll() {
let mut stack = make_stack!(&mut [1, 2, 3]);
stack.roll().unwrap();
assert_eq!(stack.values(), &[2, 3, 1]);
}
#[test]
fn unnop() {
let mut stack = make_stack!(&mut [42]);
stack.apply_unary(|a| Ok(-a)).unwrap();
assert_eq!(stack.peek(), Some(-42));
stack.apply_unary(|a| Ok(!a)).unwrap();
assert_eq!(stack.peek(), Some(!-42));
}
#[test]
fn binop() {
let mut stack = make_empty_stack!(&mut [0; 32]);
for value in 1..=5 {
stack.push(value).unwrap();
}
stack.apply_binary(|a, b| Ok(a + b)).unwrap();
assert_eq!(stack.peek(), Some(9));
stack.apply_binary(|a, b| Ok(a * b)).unwrap();
assert_eq!(stack.peek(), Some(27));
stack.apply_binary(|a, b| Ok(a - b)).unwrap();
assert_eq!(stack.peek(), Some(-25));
stack.apply_binary(|a, b| Ok(a / b)).unwrap();
assert_eq!(stack.peek(), Some(0));
}
}