gif/common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
use std::borrow::Cow;
#[cfg(feature = "color_quant")]
use std::collections::{HashMap, HashSet};
/// Disposal method
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum DisposalMethod {
/// StreamingDecoder is not required to take any action.
Any = 0,
/// Do not dispose.
Keep = 1,
/// Restore to background color.
Background = 2,
/// Restore to previous.
Previous = 3,
}
impl DisposalMethod {
/// Converts `u8` to `Option<Self>`
#[must_use]
pub fn from_u8(n: u8) -> Option<DisposalMethod> {
match n {
0 => Some(DisposalMethod::Any),
1 => Some(DisposalMethod::Keep),
2 => Some(DisposalMethod::Background),
3 => Some(DisposalMethod::Previous),
_ => None,
}
}
}
/// Known GIF block labels.
///
/// Note that the block uniquely specifies the layout of bytes that follow and how they are
/// framed. For example, the header always has a fixed length but is followed by a variable amount
/// of additional data. An image descriptor may be followed by a local color table depending on
/// information read in it. Therefore, it doesn't make sense to continue parsing after encountering
/// an unknown block as the semantics of following bytes are unclear.
///
/// The extension block provides a common framing for an arbitrary amount of application specific
/// data which may be ignored.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Block {
/// Image block.
Image = 0x2C,
/// Extension block.
Extension = 0x21,
/// Image trailer.
Trailer = 0x3B,
}
impl Block {
/// Converts `u8` to `Option<Self>`
#[must_use]
pub fn from_u8(n: u8) -> Option<Block> {
match n {
0x2C => Some(Block::Image),
0x21 => Some(Block::Extension),
0x3B => Some(Block::Trailer),
_ => None,
}
}
}
/// A newtype wrapper around an arbitrary extension ID.
///
/// An extension is some amount of byte data organized in sub-blocks so that one can skip over it
/// without knowing the semantics. Though technically you likely want to use a `Application`
/// extension, the library tries to stay flexible here.
///
/// This allows us to customize the set of impls compared to a raw `u8`. It also clarifies the
/// intent and gives some inherent methods for interoperability with known extension types.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct AnyExtension(pub u8);
/// Known GIF extension labels.
///
/// These are extensions which may be interpreted by the library and to which a specification with
/// the internal data layout is known.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Extension {
/// Plain Text extension.
///
/// This instructs the decoder to render a text as characters in a grid of cells, in a
/// mono-spaced font of its choosing. This is seldom actually implemented and ignored by
/// ImageMagick. The color is always taken from the global table which further complicates any
/// use. No real information on the frame sequencing of this block is available in the
/// standard.
Text = 0x01,
/// Control extension.
Control = 0xF9,
/// Comment extension.
Comment = 0xFE,
/// Application extension.
///
/// See [ImageMagick] for an idea of commonly recognized extensions.
///
/// [ImageMagick]: https://github.com/ImageMagick/ImageMagick/blob/b0b58c6303195928060f55f9c3ca8233ab7f7733/coders/gif.c#L1128
Application = 0xFF,
}
impl AnyExtension {
/// Decode the label as a known extension.
#[must_use]
pub fn into_known(self) -> Option<Extension> {
Extension::from_u8(self.0)
}
}
impl From<Extension> for AnyExtension {
fn from(ext: Extension) -> Self {
AnyExtension(ext as u8)
}
}
impl Extension {
/// Converts `u8` to a `Extension` if it is known.
#[must_use]
pub fn from_u8(n: u8) -> Option<Extension> {
match n {
0x01 => Some(Extension::Text),
0xF9 => Some(Extension::Control),
0xFE => Some(Extension::Comment),
0xFF => Some(Extension::Application),
_ => None,
}
}
}
/// A GIF frame
#[derive(Debug, Clone)]
pub struct Frame<'a> {
/// Frame delay in units of 10 ms.
pub delay: u16,
/// Disposal method.
pub dispose: DisposalMethod,
/// Transparent index (if available).
pub transparent: Option<u8>,
/// True if the frame needs user input to be displayed.
pub needs_user_input: bool,
/// Offset from the top border of the canvas.
pub top: u16,
/// Offset from the left border of the canvas.
pub left: u16,
/// Width of the frame.
pub width: u16,
/// Height of the frame.
pub height: u16,
/// True if the image is interlaced.
pub interlaced: bool,
/// Frame local color palette if available.
pub palette: Option<Vec<u8>>,
/// Buffer containing the image data.
/// Only indices unless configured differently.
pub buffer: Cow<'a, [u8]>,
}
impl<'a> Default for Frame<'a> {
fn default() -> Frame<'a> {
Frame {
delay: 0,
dispose: DisposalMethod::Keep,
transparent: None,
needs_user_input: false,
top: 0,
left: 0,
width: 0,
height: 0,
interlaced: false,
palette: None,
buffer: Cow::Borrowed(&[]),
}
}
}
impl Frame<'static> {
/// Creates a frame from pixels in RGBA format.
///
/// This is a lossy method. The `gif` format does not support arbitrary alpha but only a 1-bit
/// transparency mask per pixel. Any non-zero alpha value will be interpreted as a fully opaque
/// pixel. Additionally, only 256 colors can appear in a single frame. The palette will be
/// reduced by the NeuQuant algorithm if necessary. Different frames have independent palettes.
///
/// *Note: This method is not optimized for speed.*
///
/// # Panics:
/// * If the length of pixels does not equal `width * height * 4`.
#[cfg(feature = "color_quant")]
pub fn from_rgba(width: u16, height: u16, pixels: &mut [u8]) -> Frame<'static> {
Frame::from_rgba_speed(width, height, pixels, 1)
}
/// Creates a frame from pixels in RGBA format.
///
/// `speed` is a value in the range [1, 30].
/// The higher the value the faster it runs at the cost of image quality.
/// A `speed` of 10 is a good compromise between speed and quality.
///
/// This is a lossy method. The `gif` format does not support arbitrary alpha but only a 1-bit
/// transparency mask per pixel. Any non-zero alpha value will be interpreted as a fully opaque
/// pixel. Additionally, only 256 colors can appear in a single frame. The palette will be
/// reduced by the NeuQuant algorithm if necessary. Different frames have independent palettes.
///
/// # Panics:
/// * If the length of pixels does not equal `width * height * 4`.
/// * If `speed < 1` or `speed > 30`
#[cfg(feature = "color_quant")]
pub fn from_rgba_speed(width: u16, height: u16, pixels: &mut [u8], speed: i32) -> Frame<'static> {
assert_eq!(width as usize * height as usize * 4, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
assert!(speed >= 1 && speed <= 30, "speed needs to be in the range [1, 30]");
let mut transparent = None;
for pix in pixels.chunks_exact_mut(4) {
if pix[3] != 0 {
pix[3] = 0xFF;
} else {
transparent = Some([pix[0], pix[1], pix[2], pix[3]]);
}
}
// Attempt to build a palette of all colors. If we go over 256 colors,
// switch to the NeuQuant algorithm.
let mut colors: HashSet<(u8, u8, u8, u8)> = HashSet::new();
for pixel in pixels.chunks_exact(4) {
if colors.insert((pixel[0], pixel[1], pixel[2], pixel[3])) && colors.len() > 256 {
// > 256 colours, let's use NeuQuant.
let nq = color_quant::NeuQuant::new(speed, 256, pixels);
return Frame {
width,
height,
buffer: Cow::Owned(pixels.chunks_exact(4).map(|pix| nq.index_of(pix) as u8).collect()),
palette: Some(nq.color_map_rgb()),
transparent: transparent.map(|t| nq.index_of(&t) as u8),
..Frame::default()
};
}
}
// Palette size <= 256 elements, we can build an exact palette.
let mut colors_vec: Vec<(u8, u8, u8, u8)> = colors.into_iter().collect();
colors_vec.sort_unstable();
let palette = colors_vec.iter().flat_map(|&(r, g, b, _a)| [r, g, b]).collect();
let colors_lookup: HashMap<(u8, u8, u8, u8), u8> = colors_vec.into_iter().zip(0..=255).collect();
let index_of = | pixel: &[u8] |
colors_lookup.get(&(pixel[0], pixel[1], pixel[2], pixel[3])).copied().unwrap_or(0);
return Frame {
width,
height,
buffer: Cow::Owned(pixels.chunks_exact(4).map(index_of).collect()),
palette: Some(palette),
transparent: transparent.map(|t| index_of(&t)),
..Frame::default()
};
}
/// Creates a frame from a palette and indexed pixels.
///
/// # Panics:
/// * If the length of pixels does not equal `width * height`.
/// * If the length of palette > `256 * 3`.
pub fn from_palette_pixels(width: u16, height: u16, pixels: impl Into<Vec<u8>>, palette: impl Into<Vec<u8>>, transparent: Option<u8>) -> Frame<'static> {
let pixels = pixels.into();
let palette = palette.into();
assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");
assert!(palette.len() <= 256*3, "Too many palette values to create a GIF Frame");
Frame {
width,
height,
buffer: Cow::Owned(pixels),
palette: Some(palette),
transparent,
..Frame::default()
}
}
/// Creates a frame from indexed pixels in the global palette.
///
/// # Panics:
/// * If the length of pixels does not equal `width * height`.
pub fn from_indexed_pixels(width: u16, height: u16, pixels: impl Into<Vec<u8>>, transparent: Option<u8>) -> Frame<'static> {
let pixels = pixels.into();
assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");
Frame {
width,
height,
buffer: Cow::Owned(pixels.clone()),
palette: None,
transparent,
..Frame::default()
}
}
/// Creates a frame from pixels in RGB format.
///
/// This is a lossy method. In the `gif` format only 256 colors can appear in a single frame.
/// The palette will be reduced by the NeuQuant algorithm if necessary. Different frames have
/// independent palettes.
///
/// *Note: This method is not optimized for speed.*
///
/// # Panics:
/// * If the length of pixels does not equal `width * height * 3`.
#[cfg(feature = "color_quant")]
#[must_use]
pub fn from_rgb(width: u16, height: u16, pixels: &[u8]) -> Frame<'static> {
Frame::from_rgb_speed(width, height, pixels, 1)
}
/// Creates a frame from pixels in RGB format.
///
/// `speed` is a value in the range [1, 30].
///
/// This is a lossy method. In the `gif` format only 256 colors can appear in a single frame.
/// The palette will be reduced by the NeuQuant algorithm if necessary. Different frames have
/// independent palettes.
///
/// The higher the value the faster it runs at the cost of image quality.
/// A `speed` of 10 is a good compromise between speed and quality.
///
/// # Panics:
/// * If the length of pixels does not equal `width * height * 3`.
/// * If `speed < 1` or `speed > 30`
#[cfg(feature = "color_quant")]
#[must_use]
pub fn from_rgb_speed(width: u16, height: u16, pixels: &[u8], speed: i32) -> Frame<'static> {
assert_eq!(width as usize * height as usize * 3, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
let mut vec: Vec<u8> = Vec::new();
vec.try_reserve_exact(pixels.len() + width as usize * height as usize).expect("OOM");
for v in pixels.chunks_exact(3) {
vec.extend_from_slice(&[v[0], v[1], v[2], 0xFF]);
}
Frame::from_rgba_speed(width, height, &mut vec, speed)
}
/// Leaves empty buffer and empty palette behind
#[inline]
pub(crate) fn take(&mut self) -> Self {
Frame {
delay: self.delay,
dispose: self.dispose,
transparent: self.transparent,
needs_user_input: self.needs_user_input,
top: self.top,
left: self.left,
width: self.width,
height: self.height,
interlaced: self.interlaced,
palette: std::mem::take(&mut self.palette),
buffer: std::mem::replace(&mut self.buffer, Cow::Borrowed(&[])),
}
}
}
#[test]
#[cfg(feature = "color_quant")]
// Creating the `colors_lookup` hashmap in Frame::from_rgba_speed panics due to
// overflow while bypassing NeuQuant and zipping a RangeFrom with 256 colors.
// Changing .zip(0_u8..) to .zip(0_u8..=255) fixes this issue.
fn rgba_speed_avoid_panic_256_colors() {
let side = 16;
let pixel_data: Vec<u8> = (0..=255).map(|a| vec![a, a, a]).flatten().collect();
let _ = Frame::from_rgb(side, side, &pixel_data);
}