indexmap/map/
core.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
//! This is the core implementation that doesn't depend on the hasher at all.
//!
//! The methods of `IndexMapCore` don't use any Hash properties of K.
//!
//! It's cleaner to separate them out, then the compiler checks that we are not
//! using Hash at all in these methods.
//!
//! However, we should probably not let this show in the public API or docs.

mod entry;

pub mod raw_entry_v1;

use hashbrown::hash_table;

use crate::vec::{self, Vec};
use crate::TryReserveError;
use core::mem;
use core::ops::RangeBounds;

use crate::util::simplify_range;
use crate::{Bucket, Equivalent, HashValue};

type Indices = hash_table::HashTable<usize>;
type Entries<K, V> = Vec<Bucket<K, V>>;

pub use entry::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};

/// Core of the map that does not depend on S
#[derive(Debug)]
pub(crate) struct IndexMapCore<K, V> {
    /// indices mapping from the entry hash to its index.
    indices: Indices,
    /// entries is a dense vec maintaining entry order.
    entries: Entries<K, V>,
}

/// Mutable references to the parts of an `IndexMapCore`.
///
/// When using `HashTable::find_entry`, that takes hold of `&mut indices`, so we have to borrow our
/// `&mut entries` separately, and there's no way to go back to a `&mut IndexMapCore`. So this type
/// is used to implement methods on the split references, and `IndexMapCore` can also call those to
/// avoid duplication.
struct RefMut<'a, K, V> {
    indices: &'a mut Indices,
    entries: &'a mut Entries<K, V>,
}

#[inline(always)]
fn get_hash<K, V>(entries: &[Bucket<K, V>]) -> impl Fn(&usize) -> u64 + '_ {
    move |&i| entries[i].hash.get()
}

#[inline]
fn equivalent<'a, K, V, Q: ?Sized + Equivalent<K>>(
    key: &'a Q,
    entries: &'a [Bucket<K, V>],
) -> impl Fn(&usize) -> bool + 'a {
    move |&i| Q::equivalent(key, &entries[i].key)
}

#[inline]
fn erase_index(table: &mut Indices, hash: HashValue, index: usize) {
    if let Ok(entry) = table.find_entry(hash.get(), move |&i| i == index) {
        entry.remove();
    } else if cfg!(debug_assertions) {
        panic!("index not found");
    }
}

#[inline]
fn update_index(table: &mut Indices, hash: HashValue, old: usize, new: usize) {
    let index = table
        .find_mut(hash.get(), move |&i| i == old)
        .expect("index not found");
    *index = new;
}

/// Inserts many entries into the indices table without reallocating,
/// and without regard for duplication.
///
/// ***Panics*** if there is not sufficient capacity already.
fn insert_bulk_no_grow<K, V>(indices: &mut Indices, entries: &[Bucket<K, V>]) {
    assert!(indices.capacity() - indices.len() >= entries.len());
    for entry in entries {
        indices.insert_unique(entry.hash.get(), indices.len(), |_| unreachable!());
    }
}

impl<K, V> Clone for IndexMapCore<K, V>
where
    K: Clone,
    V: Clone,
{
    fn clone(&self) -> Self {
        let mut new = Self::new();
        new.clone_from(self);
        new
    }

    fn clone_from(&mut self, other: &Self) {
        self.indices.clone_from(&other.indices);
        if self.entries.capacity() < other.entries.len() {
            // If we must resize, match the indices capacity.
            let additional = other.entries.len() - self.entries.len();
            self.borrow_mut().reserve_entries(additional);
        }
        self.entries.clone_from(&other.entries);
    }
}

impl<K, V> crate::Entries for IndexMapCore<K, V> {
    type Entry = Bucket<K, V>;

    #[inline]
    fn into_entries(self) -> Vec<Self::Entry> {
        self.entries
    }

    #[inline]
    fn as_entries(&self) -> &[Self::Entry] {
        &self.entries
    }

    #[inline]
    fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
        &mut self.entries
    }

    fn with_entries<F>(&mut self, f: F)
    where
        F: FnOnce(&mut [Self::Entry]),
    {
        f(&mut self.entries);
        self.rebuild_hash_table();
    }
}

impl<K, V> IndexMapCore<K, V> {
    /// The maximum capacity before the `entries` allocation would exceed `isize::MAX`.
    const MAX_ENTRIES_CAPACITY: usize = (isize::MAX as usize) / mem::size_of::<Bucket<K, V>>();

    #[inline]
    pub(crate) const fn new() -> Self {
        IndexMapCore {
            indices: Indices::new(),
            entries: Vec::new(),
        }
    }

    #[inline]
    fn borrow_mut(&mut self) -> RefMut<'_, K, V> {
        RefMut::new(&mut self.indices, &mut self.entries)
    }

    #[inline]
    pub(crate) fn with_capacity(n: usize) -> Self {
        IndexMapCore {
            indices: Indices::with_capacity(n),
            entries: Vec::with_capacity(n),
        }
    }

    #[inline]
    pub(crate) fn len(&self) -> usize {
        self.indices.len()
    }

    #[inline]
    pub(crate) fn capacity(&self) -> usize {
        Ord::min(self.indices.capacity(), self.entries.capacity())
    }

    pub(crate) fn clear(&mut self) {
        self.indices.clear();
        self.entries.clear();
    }

    pub(crate) fn truncate(&mut self, len: usize) {
        if len < self.len() {
            self.erase_indices(len, self.entries.len());
            self.entries.truncate(len);
        }
    }

    pub(crate) fn drain<R>(&mut self, range: R) -> vec::Drain<'_, Bucket<K, V>>
    where
        R: RangeBounds<usize>,
    {
        let range = simplify_range(range, self.entries.len());
        self.erase_indices(range.start, range.end);
        self.entries.drain(range)
    }

    #[cfg(feature = "rayon")]
    pub(crate) fn par_drain<R>(&mut self, range: R) -> rayon::vec::Drain<'_, Bucket<K, V>>
    where
        K: Send,
        V: Send,
        R: RangeBounds<usize>,
    {
        use rayon::iter::ParallelDrainRange;
        let range = simplify_range(range, self.entries.len());
        self.erase_indices(range.start, range.end);
        self.entries.par_drain(range)
    }

    pub(crate) fn split_off(&mut self, at: usize) -> Self {
        assert!(at <= self.entries.len());
        self.erase_indices(at, self.entries.len());
        let entries = self.entries.split_off(at);

        let mut indices = Indices::with_capacity(entries.len());
        insert_bulk_no_grow(&mut indices, &entries);
        Self { indices, entries }
    }

    pub(crate) fn split_splice<R>(&mut self, range: R) -> (Self, vec::IntoIter<Bucket<K, V>>)
    where
        R: RangeBounds<usize>,
    {
        let range = simplify_range(range, self.len());
        self.erase_indices(range.start, self.entries.len());
        let entries = self.entries.split_off(range.end);
        let drained = self.entries.split_off(range.start);

        let mut indices = Indices::with_capacity(entries.len());
        insert_bulk_no_grow(&mut indices, &entries);
        (Self { indices, entries }, drained.into_iter())
    }

    /// Append from another map without checking whether items already exist.
    pub(crate) fn append_unchecked(&mut self, other: &mut Self) {
        self.reserve(other.len());
        insert_bulk_no_grow(&mut self.indices, &other.entries);
        self.entries.append(&mut other.entries);
        other.indices.clear();
    }

    /// Reserve capacity for `additional` more key-value pairs.
    pub(crate) fn reserve(&mut self, additional: usize) {
        self.indices.reserve(additional, get_hash(&self.entries));
        // Only grow entries if necessary, since we also round up capacity.
        if additional > self.entries.capacity() - self.entries.len() {
            self.borrow_mut().reserve_entries(additional);
        }
    }

    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
    pub(crate) fn reserve_exact(&mut self, additional: usize) {
        self.indices.reserve(additional, get_hash(&self.entries));
        self.entries.reserve_exact(additional);
    }

    /// Try to reserve capacity for `additional` more key-value pairs.
    pub(crate) fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.indices
            .try_reserve(additional, get_hash(&self.entries))
            .map_err(TryReserveError::from_hashbrown)?;
        // Only grow entries if necessary, since we also round up capacity.
        if additional > self.entries.capacity() - self.entries.len() {
            self.try_reserve_entries(additional)
        } else {
            Ok(())
        }
    }

    /// Try to reserve entries capacity, rounded up to match the indices
    fn try_reserve_entries(&mut self, additional: usize) -> Result<(), TryReserveError> {
        // Use a soft-limit on the maximum capacity, but if the caller explicitly
        // requested more, do it and let them have the resulting error.
        let new_capacity = Ord::min(self.indices.capacity(), Self::MAX_ENTRIES_CAPACITY);
        let try_add = new_capacity - self.entries.len();
        if try_add > additional && self.entries.try_reserve_exact(try_add).is_ok() {
            return Ok(());
        }
        self.entries
            .try_reserve_exact(additional)
            .map_err(TryReserveError::from_alloc)
    }

    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
    pub(crate) fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.indices
            .try_reserve(additional, get_hash(&self.entries))
            .map_err(TryReserveError::from_hashbrown)?;
        self.entries
            .try_reserve_exact(additional)
            .map_err(TryReserveError::from_alloc)
    }

    /// Shrink the capacity of the map with a lower bound
    pub(crate) fn shrink_to(&mut self, min_capacity: usize) {
        self.indices
            .shrink_to(min_capacity, get_hash(&self.entries));
        self.entries.shrink_to(min_capacity);
    }

    /// Remove the last key-value pair
    pub(crate) fn pop(&mut self) -> Option<(K, V)> {
        if let Some(entry) = self.entries.pop() {
            let last = self.entries.len();
            erase_index(&mut self.indices, entry.hash, last);
            Some((entry.key, entry.value))
        } else {
            None
        }
    }

    /// Return the index in `entries` where an equivalent key can be found
    pub(crate) fn get_index_of<Q>(&self, hash: HashValue, key: &Q) -> Option<usize>
    where
        Q: ?Sized + Equivalent<K>,
    {
        let eq = equivalent(key, &self.entries);
        self.indices.find(hash.get(), eq).copied()
    }

    /// Append a key-value pair to `entries`,
    /// *without* checking whether it already exists.
    fn push_entry(&mut self, hash: HashValue, key: K, value: V) {
        if self.entries.len() == self.entries.capacity() {
            // Reserve our own capacity synced to the indices,
            // rather than letting `Vec::push` just double it.
            self.borrow_mut().reserve_entries(1);
        }
        self.entries.push(Bucket { hash, key, value });
    }

    pub(crate) fn insert_full(&mut self, hash: HashValue, key: K, value: V) -> (usize, Option<V>)
    where
        K: Eq,
    {
        let eq = equivalent(&key, &self.entries);
        let hasher = get_hash(&self.entries);
        match self.indices.entry(hash.get(), eq, hasher) {
            hash_table::Entry::Occupied(entry) => {
                let i = *entry.get();
                (i, Some(mem::replace(&mut self.entries[i].value, value)))
            }
            hash_table::Entry::Vacant(entry) => {
                let i = self.entries.len();
                entry.insert(i);
                self.push_entry(hash, key, value);
                debug_assert_eq!(self.indices.len(), self.entries.len());
                (i, None)
            }
        }
    }

    /// Same as `insert_full`, except it also replaces the key
    pub(crate) fn replace_full(
        &mut self,
        hash: HashValue,
        key: K,
        value: V,
    ) -> (usize, Option<(K, V)>)
    where
        K: Eq,
    {
        let eq = equivalent(&key, &self.entries);
        let hasher = get_hash(&self.entries);
        match self.indices.entry(hash.get(), eq, hasher) {
            hash_table::Entry::Occupied(entry) => {
                let i = *entry.get();
                let entry = &mut self.entries[i];
                let kv = (
                    mem::replace(&mut entry.key, key),
                    mem::replace(&mut entry.value, value),
                );
                (i, Some(kv))
            }
            hash_table::Entry::Vacant(entry) => {
                let i = self.entries.len();
                entry.insert(i);
                self.push_entry(hash, key, value);
                debug_assert_eq!(self.indices.len(), self.entries.len());
                (i, None)
            }
        }
    }

    /// Remove an entry by shifting all entries that follow it
    pub(crate) fn shift_remove_full<Q>(&mut self, hash: HashValue, key: &Q) -> Option<(usize, K, V)>
    where
        Q: ?Sized + Equivalent<K>,
    {
        let eq = equivalent(key, &self.entries);
        match self.indices.find_entry(hash.get(), eq) {
            Ok(entry) => {
                let (index, _) = entry.remove();
                let (key, value) = self.borrow_mut().shift_remove_finish(index);
                Some((index, key, value))
            }
            Err(_) => None,
        }
    }

    /// Remove an entry by shifting all entries that follow it
    #[inline]
    pub(crate) fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
        self.borrow_mut().shift_remove_index(index)
    }

    #[inline]
    pub(super) fn move_index(&mut self, from: usize, to: usize) {
        self.borrow_mut().move_index(from, to);
    }

    #[inline]
    pub(crate) fn swap_indices(&mut self, a: usize, b: usize) {
        self.borrow_mut().swap_indices(a, b);
    }

    /// Remove an entry by swapping it with the last
    pub(crate) fn swap_remove_full<Q>(&mut self, hash: HashValue, key: &Q) -> Option<(usize, K, V)>
    where
        Q: ?Sized + Equivalent<K>,
    {
        let eq = equivalent(key, &self.entries);
        match self.indices.find_entry(hash.get(), eq) {
            Ok(entry) => {
                let (index, _) = entry.remove();
                let (key, value) = self.borrow_mut().swap_remove_finish(index);
                Some((index, key, value))
            }
            Err(_) => None,
        }
    }

    /// Remove an entry by swapping it with the last
    #[inline]
    pub(crate) fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
        self.borrow_mut().swap_remove_index(index)
    }

    /// Erase `start..end` from `indices`, and shift `end..` indices down to `start..`
    ///
    /// All of these items should still be at their original location in `entries`.
    /// This is used by `drain`, which will let `Vec::drain` do the work on `entries`.
    fn erase_indices(&mut self, start: usize, end: usize) {
        let (init, shifted_entries) = self.entries.split_at(end);
        let (start_entries, erased_entries) = init.split_at(start);

        let erased = erased_entries.len();
        let shifted = shifted_entries.len();
        let half_capacity = self.indices.capacity() / 2;

        // Use a heuristic between different strategies
        if erased == 0 {
            // Degenerate case, nothing to do
        } else if start + shifted < half_capacity && start < erased {
            // Reinsert everything, as there are few kept indices
            self.indices.clear();

            // Reinsert stable indices, then shifted indices
            insert_bulk_no_grow(&mut self.indices, start_entries);
            insert_bulk_no_grow(&mut self.indices, shifted_entries);
        } else if erased + shifted < half_capacity {
            // Find each affected index, as there are few to adjust

            // Find erased indices
            for (i, entry) in (start..).zip(erased_entries) {
                erase_index(&mut self.indices, entry.hash, i);
            }

            // Find shifted indices
            for ((new, old), entry) in (start..).zip(end..).zip(shifted_entries) {
                update_index(&mut self.indices, entry.hash, old, new);
            }
        } else {
            // Sweep the whole table for adjustments
            let offset = end - start;
            self.indices.retain(move |i| {
                if *i >= end {
                    *i -= offset;
                    true
                } else {
                    *i < start
                }
            });
        }

        debug_assert_eq!(self.indices.len(), start + shifted);
    }

    pub(crate) fn retain_in_order<F>(&mut self, mut keep: F)
    where
        F: FnMut(&mut K, &mut V) -> bool,
    {
        self.entries
            .retain_mut(|entry| keep(&mut entry.key, &mut entry.value));
        if self.entries.len() < self.indices.len() {
            self.rebuild_hash_table();
        }
    }

    fn rebuild_hash_table(&mut self) {
        self.indices.clear();
        insert_bulk_no_grow(&mut self.indices, &self.entries);
    }

    pub(crate) fn reverse(&mut self) {
        self.entries.reverse();

        // No need to save hash indices, can easily calculate what they should
        // be, given that this is an in-place reversal.
        let len = self.entries.len();
        for i in &mut self.indices {
            *i = len - *i - 1;
        }
    }
}

impl<'a, K, V> RefMut<'a, K, V> {
    #[inline]
    fn new(indices: &'a mut Indices, entries: &'a mut Entries<K, V>) -> Self {
        Self { indices, entries }
    }

    /// Reserve entries capacity, rounded up to match the indices
    fn reserve_entries(&mut self, additional: usize) {
        // Use a soft-limit on the maximum capacity, but if the caller explicitly
        // requested more, do it and let them have the resulting panic.
        let new_capacity = Ord::min(
            self.indices.capacity(),
            IndexMapCore::<K, V>::MAX_ENTRIES_CAPACITY,
        );
        let try_add = new_capacity - self.entries.len();
        if try_add > additional && self.entries.try_reserve_exact(try_add).is_ok() {
            return;
        }
        self.entries.reserve_exact(additional);
    }

    /// Insert a key-value pair in `entries`,
    /// *without* checking whether it already exists.
    fn insert_unique(mut self, hash: HashValue, key: K, value: V) -> OccupiedEntry<'a, K, V> {
        if self.entries.len() == self.entries.capacity() {
            // Reserve our own capacity synced to the indices,
            // rather than letting `Vec::push` just double it.
            self.reserve_entries(1);
        }
        let i = self.indices.len();
        let entry = self
            .indices
            .insert_unique(hash.get(), i, get_hash(self.entries));
        debug_assert_eq!(i, self.entries.len());
        self.entries.push(Bucket { hash, key, value });
        OccupiedEntry::new(self.entries, entry)
    }

    /// Insert a key-value pair in `entries` at a particular index,
    /// *without* checking whether it already exists.
    fn shift_insert_unique(&mut self, index: usize, hash: HashValue, key: K, value: V) {
        let end = self.indices.len();
        assert!(index <= end);
        // Increment others first so we don't have duplicate indices.
        self.increment_indices(index, end);
        let entries = &*self.entries;
        self.indices.insert_unique(hash.get(), index, move |&i| {
            // Adjust for the incremented indices to find hashes.
            debug_assert_ne!(i, index);
            let i = if i < index { i } else { i - 1 };
            entries[i].hash.get()
        });
        if self.entries.len() == self.entries.capacity() {
            // Reserve our own capacity synced to the indices,
            // rather than letting `Vec::insert` just double it.
            self.reserve_entries(1);
        }
        self.entries.insert(index, Bucket { hash, key, value });
    }

    /// Remove an entry by shifting all entries that follow it
    fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
        match self.entries.get(index) {
            Some(entry) => {
                erase_index(self.indices, entry.hash, index);
                Some(self.shift_remove_finish(index))
            }
            None => None,
        }
    }

    /// Remove an entry by shifting all entries that follow it
    ///
    /// The index should already be removed from `self.indices`.
    fn shift_remove_finish(&mut self, index: usize) -> (K, V) {
        // Correct indices that point to the entries that followed the removed entry.
        self.decrement_indices(index + 1, self.entries.len());

        // Use Vec::remove to actually remove the entry.
        let entry = self.entries.remove(index);
        (entry.key, entry.value)
    }

    /// Remove an entry by swapping it with the last
    fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
        match self.entries.get(index) {
            Some(entry) => {
                erase_index(self.indices, entry.hash, index);
                Some(self.swap_remove_finish(index))
            }
            None => None,
        }
    }

    /// Finish removing an entry by swapping it with the last
    ///
    /// The index should already be removed from `self.indices`.
    fn swap_remove_finish(&mut self, index: usize) -> (K, V) {
        // use swap_remove, but then we need to update the index that points
        // to the other entry that has to move
        let entry = self.entries.swap_remove(index);

        // correct index that points to the entry that had to swap places
        if let Some(entry) = self.entries.get(index) {
            // was not last element
            // examine new element in `index` and find it in indices
            let last = self.entries.len();
            update_index(self.indices, entry.hash, last, index);
        }

        (entry.key, entry.value)
    }

    /// Decrement all indices in the range `start..end`.
    ///
    /// The index `start - 1` should not exist in `self.indices`.
    /// All entries should still be in their original positions.
    fn decrement_indices(&mut self, start: usize, end: usize) {
        // Use a heuristic between a full sweep vs. a `find()` for every shifted item.
        let shifted_entries = &self.entries[start..end];
        if shifted_entries.len() > self.indices.capacity() / 2 {
            // Shift all indices in range.
            for i in &mut *self.indices {
                if start <= *i && *i < end {
                    *i -= 1;
                }
            }
        } else {
            // Find each entry in range to shift its index.
            for (i, entry) in (start..end).zip(shifted_entries) {
                update_index(self.indices, entry.hash, i, i - 1);
            }
        }
    }

    /// Increment all indices in the range `start..end`.
    ///
    /// The index `end` should not exist in `self.indices`.
    /// All entries should still be in their original positions.
    fn increment_indices(&mut self, start: usize, end: usize) {
        // Use a heuristic between a full sweep vs. a `find()` for every shifted item.
        let shifted_entries = &self.entries[start..end];
        if shifted_entries.len() > self.indices.capacity() / 2 {
            // Shift all indices in range.
            for i in &mut *self.indices {
                if start <= *i && *i < end {
                    *i += 1;
                }
            }
        } else {
            // Find each entry in range to shift its index, updated in reverse so
            // we never have duplicated indices that might have a hash collision.
            for (i, entry) in (start..end).zip(shifted_entries).rev() {
                update_index(self.indices, entry.hash, i, i + 1);
            }
        }
    }

    fn move_index(&mut self, from: usize, to: usize) {
        let from_hash = self.entries[from].hash;
        let _ = self.entries[to]; // explicit bounds check
        if from != to {
            // Use a sentinel index so other indices don't collide.
            update_index(self.indices, from_hash, from, usize::MAX);

            // Update all other indices and rotate the entry positions.
            if from < to {
                self.decrement_indices(from + 1, to + 1);
                self.entries[from..=to].rotate_left(1);
            } else if to < from {
                self.increment_indices(to, from);
                self.entries[to..=from].rotate_right(1);
            }

            // Change the sentinel index to its final position.
            update_index(self.indices, from_hash, usize::MAX, to);
        }
    }

    fn swap_indices(&mut self, a: usize, b: usize) {
        // If they're equal and in-bounds, there's nothing to do.
        if a == b && a < self.entries.len() {
            return;
        }

        // We'll get a "nice" bounds-check from indexing `entries`,
        // and then we expect to find it in the table as well.
        match self.indices.get_many_mut(
            [self.entries[a].hash.get(), self.entries[b].hash.get()],
            move |i, &x| if i == 0 { x == a } else { x == b },
        ) {
            [Some(ref_a), Some(ref_b)] => {
                mem::swap(ref_a, ref_b);
                self.entries.swap(a, b);
            }
            _ => panic!("indices not found"),
        }
    }
}

#[test]
fn assert_send_sync() {
    fn assert_send_sync<T: Send + Sync>() {}
    assert_send_sync::<IndexMapCore<i32, i32>>();
    assert_send_sync::<Entry<'_, i32, i32>>();
    assert_send_sync::<IndexedEntry<'_, i32, i32>>();
    assert_send_sync::<raw_entry_v1::RawEntryMut<'_, i32, i32, ()>>();
}