tokio/runtime/scheduler/multi_thread/queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
//! Run-queue structures to support a work-stealing scheduler
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::Arc;
use crate::runtime::scheduler::multi_thread::{Overflow, Stats};
use crate::runtime::task;
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
// Use wider integers when possible to increase ABA resilience.
//
// See issue #5041: <https://github.com/tokio-rs/tokio/issues/5041>.
cfg_has_atomic_u64! {
type UnsignedShort = u32;
type UnsignedLong = u64;
type AtomicUnsignedShort = crate::loom::sync::atomic::AtomicU32;
type AtomicUnsignedLong = crate::loom::sync::atomic::AtomicU64;
}
cfg_not_has_atomic_u64! {
type UnsignedShort = u16;
type UnsignedLong = u32;
type AtomicUnsignedShort = crate::loom::sync::atomic::AtomicU16;
type AtomicUnsignedLong = crate::loom::sync::atomic::AtomicU32;
}
/// Producer handle. May only be used from a single thread.
pub(crate) struct Local<T: 'static> {
inner: Arc<Inner<T>>,
}
/// Consumer handle. May be used from many threads.
pub(crate) struct Steal<T: 'static>(Arc<Inner<T>>);
pub(crate) struct Inner<T: 'static> {
/// Concurrently updated by many threads.
///
/// Contains two `UnsignedShort` values. The `LSB` byte is the "real" head of
/// the queue. The `UnsignedShort` in the `MSB` is set by a stealer in process
/// of stealing values. It represents the first value being stolen in the
/// batch. The `UnsignedShort` indices are intentionally wider than strictly
/// required for buffer indexing in order to provide ABA mitigation and make
/// it possible to distinguish between full and empty buffers.
///
/// When both `UnsignedShort` values are the same, there is no active
/// stealer.
///
/// Tracking an in-progress stealer prevents a wrapping scenario.
head: AtomicUnsignedLong,
/// Only updated by producer thread but read by many threads.
tail: AtomicUnsignedShort,
/// Elements
buffer: Box<[UnsafeCell<MaybeUninit<task::Notified<T>>>; LOCAL_QUEUE_CAPACITY]>,
}
unsafe impl<T> Send for Inner<T> {}
unsafe impl<T> Sync for Inner<T> {}
#[cfg(not(loom))]
const LOCAL_QUEUE_CAPACITY: usize = 256;
// Shrink the size of the local queue when using loom. This shouldn't impact
// logic, but allows loom to test more edge cases in a reasonable a mount of
// time.
#[cfg(loom)]
const LOCAL_QUEUE_CAPACITY: usize = 4;
const MASK: usize = LOCAL_QUEUE_CAPACITY - 1;
// Constructing the fixed size array directly is very awkward. The only way to
// do it is to repeat `UnsafeCell::new(MaybeUninit::uninit())` 256 times, as
// the contents are not Copy. The trick with defining a const doesn't work for
// generic types.
fn make_fixed_size<T>(buffer: Box<[T]>) -> Box<[T; LOCAL_QUEUE_CAPACITY]> {
assert_eq!(buffer.len(), LOCAL_QUEUE_CAPACITY);
// safety: We check that the length is correct.
unsafe { Box::from_raw(Box::into_raw(buffer).cast()) }
}
/// Create a new local run-queue
pub(crate) fn local<T: 'static>() -> (Steal<T>, Local<T>) {
let mut buffer = Vec::with_capacity(LOCAL_QUEUE_CAPACITY);
for _ in 0..LOCAL_QUEUE_CAPACITY {
buffer.push(UnsafeCell::new(MaybeUninit::uninit()));
}
let inner = Arc::new(Inner {
head: AtomicUnsignedLong::new(0),
tail: AtomicUnsignedShort::new(0),
buffer: make_fixed_size(buffer.into_boxed_slice()),
});
let local = Local {
inner: inner.clone(),
};
let remote = Steal(inner);
(remote, local)
}
impl<T> Local<T> {
/// Returns the number of entries in the queue
pub(crate) fn len(&self) -> usize {
self.inner.len() as usize
}
/// How many tasks can be pushed into the queue
pub(crate) fn remaining_slots(&self) -> usize {
self.inner.remaining_slots()
}
pub(crate) fn max_capacity(&self) -> usize {
LOCAL_QUEUE_CAPACITY
}
/// Returns false if there are any entries in the queue
///
/// Separate to `is_stealable` so that refactors of `is_stealable` to "protect"
/// some tasks from stealing won't affect this
pub(crate) fn has_tasks(&self) -> bool {
!self.inner.is_empty()
}
/// Pushes a batch of tasks to the back of the queue. All tasks must fit in
/// the local queue.
///
/// # Panics
///
/// The method panics if there is not enough capacity to fit in the queue.
pub(crate) fn push_back(&mut self, tasks: impl ExactSizeIterator<Item = task::Notified<T>>) {
let len = tasks.len();
assert!(len <= LOCAL_QUEUE_CAPACITY);
if len == 0 {
// Nothing to do
return;
}
let head = self.inner.head.load(Acquire);
let (steal, _) = unpack(head);
// safety: this is the **only** thread that updates this cell.
let mut tail = unsafe { self.inner.tail.unsync_load() };
if tail.wrapping_sub(steal) <= (LOCAL_QUEUE_CAPACITY - len) as UnsignedShort {
// Yes, this if condition is structured a bit weird (first block
// does nothing, second returns an error). It is this way to match
// `push_back_or_overflow`.
} else {
panic!()
}
for task in tasks {
let idx = tail as usize & MASK;
self.inner.buffer[idx].with_mut(|ptr| {
// Write the task to the slot
//
// Safety: There is only one producer and the above `if`
// condition ensures we don't touch a cell if there is a
// value, thus no consumer.
unsafe {
ptr::write((*ptr).as_mut_ptr(), task);
}
});
tail = tail.wrapping_add(1);
}
self.inner.tail.store(tail, Release);
}
/// Pushes a task to the back of the local queue, if there is not enough
/// capacity in the queue, this triggers the overflow operation.
///
/// When the queue overflows, half of the current contents of the queue is
/// moved to the given Injection queue. This frees up capacity for more
/// tasks to be pushed into the local queue.
pub(crate) fn push_back_or_overflow<O: Overflow<T>>(
&mut self,
mut task: task::Notified<T>,
overflow: &O,
stats: &mut Stats,
) {
let tail = loop {
let head = self.inner.head.load(Acquire);
let (steal, real) = unpack(head);
// safety: this is the **only** thread that updates this cell.
let tail = unsafe { self.inner.tail.unsync_load() };
if tail.wrapping_sub(steal) < LOCAL_QUEUE_CAPACITY as UnsignedShort {
// There is capacity for the task
break tail;
} else if steal != real {
// Concurrently stealing, this will free up capacity, so only
// push the task onto the inject queue
overflow.push(task);
return;
} else {
// Push the current task and half of the queue into the
// inject queue.
match self.push_overflow(task, real, tail, overflow, stats) {
Ok(_) => return,
// Lost the race, try again
Err(v) => {
task = v;
}
}
}
};
self.push_back_finish(task, tail);
}
// Second half of `push_back`
fn push_back_finish(&self, task: task::Notified<T>, tail: UnsignedShort) {
// Map the position to a slot index.
let idx = tail as usize & MASK;
self.inner.buffer[idx].with_mut(|ptr| {
// Write the task to the slot
//
// Safety: There is only one producer and the above `if`
// condition ensures we don't touch a cell if there is a
// value, thus no consumer.
unsafe {
ptr::write((*ptr).as_mut_ptr(), task);
}
});
// Make the task available. Synchronizes with a load in
// `steal_into2`.
self.inner.tail.store(tail.wrapping_add(1), Release);
}
/// Moves a batch of tasks into the inject queue.
///
/// This will temporarily make some of the tasks unavailable to stealers.
/// Once `push_overflow` is done, a notification is sent out, so if other
/// workers "missed" some of the tasks during a steal, they will get
/// another opportunity.
#[inline(never)]
fn push_overflow<O: Overflow<T>>(
&mut self,
task: task::Notified<T>,
head: UnsignedShort,
tail: UnsignedShort,
overflow: &O,
stats: &mut Stats,
) -> Result<(), task::Notified<T>> {
/// How many elements are we taking from the local queue.
///
/// This is one less than the number of tasks pushed to the inject
/// queue as we are also inserting the `task` argument.
const NUM_TASKS_TAKEN: UnsignedShort = (LOCAL_QUEUE_CAPACITY / 2) as UnsignedShort;
assert_eq!(
tail.wrapping_sub(head) as usize,
LOCAL_QUEUE_CAPACITY,
"queue is not full; tail = {tail}; head = {head}"
);
let prev = pack(head, head);
// Claim a bunch of tasks
//
// We are claiming the tasks **before** reading them out of the buffer.
// This is safe because only the **current** thread is able to push new
// tasks.
//
// There isn't really any need for memory ordering... Relaxed would
// work. This is because all tasks are pushed into the queue from the
// current thread (or memory has been acquired if the local queue handle
// moved).
if self
.inner
.head
.compare_exchange(
prev,
pack(
head.wrapping_add(NUM_TASKS_TAKEN),
head.wrapping_add(NUM_TASKS_TAKEN),
),
Release,
Relaxed,
)
.is_err()
{
// We failed to claim the tasks, losing the race. Return out of
// this function and try the full `push` routine again. The queue
// may not be full anymore.
return Err(task);
}
/// An iterator that takes elements out of the run queue.
struct BatchTaskIter<'a, T: 'static> {
buffer: &'a [UnsafeCell<MaybeUninit<task::Notified<T>>>; LOCAL_QUEUE_CAPACITY],
head: UnsignedLong,
i: UnsignedLong,
}
impl<'a, T: 'static> Iterator for BatchTaskIter<'a, T> {
type Item = task::Notified<T>;
#[inline]
fn next(&mut self) -> Option<task::Notified<T>> {
if self.i == UnsignedLong::from(NUM_TASKS_TAKEN) {
None
} else {
let i_idx = self.i.wrapping_add(self.head) as usize & MASK;
let slot = &self.buffer[i_idx];
// safety: Our CAS from before has assumed exclusive ownership
// of the task pointers in this range.
let task = slot.with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });
self.i += 1;
Some(task)
}
}
}
// safety: The CAS above ensures that no consumer will look at these
// values again, and we are the only producer.
let batch_iter = BatchTaskIter {
buffer: &self.inner.buffer,
head: head as UnsignedLong,
i: 0,
};
overflow.push_batch(batch_iter.chain(std::iter::once(task)));
// Add 1 to factor in the task currently being scheduled.
stats.incr_overflow_count();
Ok(())
}
/// Pops a task from the local queue.
pub(crate) fn pop(&mut self) -> Option<task::Notified<T>> {
let mut head = self.inner.head.load(Acquire);
let idx = loop {
let (steal, real) = unpack(head);
// safety: this is the **only** thread that updates this cell.
let tail = unsafe { self.inner.tail.unsync_load() };
if real == tail {
// queue is empty
return None;
}
let next_real = real.wrapping_add(1);
// If `steal == real` there are no concurrent stealers. Both `steal`
// and `real` are updated.
let next = if steal == real {
pack(next_real, next_real)
} else {
assert_ne!(steal, next_real);
pack(steal, next_real)
};
// Attempt to claim a task.
let res = self
.inner
.head
.compare_exchange(head, next, AcqRel, Acquire);
match res {
Ok(_) => break real as usize & MASK,
Err(actual) => head = actual,
}
};
Some(self.inner.buffer[idx].with(|ptr| unsafe { ptr::read(ptr).assume_init() }))
}
}
impl<T> Steal<T> {
pub(crate) fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Steals half the tasks from self and place them into `dst`.
pub(crate) fn steal_into(
&self,
dst: &mut Local<T>,
dst_stats: &mut Stats,
) -> Option<task::Notified<T>> {
// Safety: the caller is the only thread that mutates `dst.tail` and
// holds a mutable reference.
let dst_tail = unsafe { dst.inner.tail.unsync_load() };
// To the caller, `dst` may **look** empty but still have values
// contained in the buffer. If another thread is concurrently stealing
// from `dst` there may not be enough capacity to steal.
let (steal, _) = unpack(dst.inner.head.load(Acquire));
if dst_tail.wrapping_sub(steal) > LOCAL_QUEUE_CAPACITY as UnsignedShort / 2 {
// we *could* try to steal less here, but for simplicity, we're just
// going to abort.
return None;
}
// Steal the tasks into `dst`'s buffer. This does not yet expose the
// tasks in `dst`.
let mut n = self.steal_into2(dst, dst_tail);
if n == 0 {
// No tasks were stolen
return None;
}
dst_stats.incr_steal_count(n as u16);
dst_stats.incr_steal_operations();
// We are returning a task here
n -= 1;
let ret_pos = dst_tail.wrapping_add(n);
let ret_idx = ret_pos as usize & MASK;
// safety: the value was written as part of `steal_into2` and not
// exposed to stealers, so no other thread can access it.
let ret = dst.inner.buffer[ret_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });
if n == 0 {
// The `dst` queue is empty, but a single task was stolen
return Some(ret);
}
// Make the stolen items available to consumers
dst.inner.tail.store(dst_tail.wrapping_add(n), Release);
Some(ret)
}
// Steal tasks from `self`, placing them into `dst`. Returns the number of
// tasks that were stolen.
fn steal_into2(&self, dst: &mut Local<T>, dst_tail: UnsignedShort) -> UnsignedShort {
let mut prev_packed = self.0.head.load(Acquire);
let mut next_packed;
let n = loop {
let (src_head_steal, src_head_real) = unpack(prev_packed);
let src_tail = self.0.tail.load(Acquire);
// If these two do not match, another thread is concurrently
// stealing from the queue.
if src_head_steal != src_head_real {
return 0;
}
// Number of available tasks to steal
let n = src_tail.wrapping_sub(src_head_real);
let n = n - n / 2;
if n == 0 {
// No tasks available to steal
return 0;
}
// Update the real head index to acquire the tasks.
let steal_to = src_head_real.wrapping_add(n);
assert_ne!(src_head_steal, steal_to);
next_packed = pack(src_head_steal, steal_to);
// Claim all those tasks. This is done by incrementing the "real"
// head but not the steal. By doing this, no other thread is able to
// steal from this queue until the current thread completes.
let res = self
.0
.head
.compare_exchange(prev_packed, next_packed, AcqRel, Acquire);
match res {
Ok(_) => break n,
Err(actual) => prev_packed = actual,
}
};
assert!(
n <= LOCAL_QUEUE_CAPACITY as UnsignedShort / 2,
"actual = {n}"
);
let (first, _) = unpack(next_packed);
// Take all the tasks
for i in 0..n {
// Compute the positions
let src_pos = first.wrapping_add(i);
let dst_pos = dst_tail.wrapping_add(i);
// Map to slots
let src_idx = src_pos as usize & MASK;
let dst_idx = dst_pos as usize & MASK;
// Read the task
//
// safety: We acquired the task with the atomic exchange above.
let task = self.0.buffer[src_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });
// Write the task to the new slot
//
// safety: `dst` queue is empty and we are the only producer to
// this queue.
dst.inner.buffer[dst_idx]
.with_mut(|ptr| unsafe { ptr::write((*ptr).as_mut_ptr(), task) });
}
let mut prev_packed = next_packed;
// Update `src_head_steal` to match `src_head_real` signalling that the
// stealing routine is complete.
loop {
let head = unpack(prev_packed).1;
next_packed = pack(head, head);
let res = self
.0
.head
.compare_exchange(prev_packed, next_packed, AcqRel, Acquire);
match res {
Ok(_) => return n,
Err(actual) => {
let (actual_steal, actual_real) = unpack(actual);
assert_ne!(actual_steal, actual_real);
prev_packed = actual;
}
}
}
}
}
cfg_unstable_metrics! {
impl<T> Steal<T> {
pub(crate) fn len(&self) -> usize {
self.0.len() as _
}
}
}
impl<T> Clone for Steal<T> {
fn clone(&self) -> Steal<T> {
Steal(self.0.clone())
}
}
impl<T> Drop for Local<T> {
fn drop(&mut self) {
if !std::thread::panicking() {
assert!(self.pop().is_none(), "queue not empty");
}
}
}
impl<T> Inner<T> {
fn remaining_slots(&self) -> usize {
let (steal, _) = unpack(self.head.load(Acquire));
let tail = self.tail.load(Acquire);
LOCAL_QUEUE_CAPACITY - (tail.wrapping_sub(steal) as usize)
}
fn len(&self) -> UnsignedShort {
let (_, head) = unpack(self.head.load(Acquire));
let tail = self.tail.load(Acquire);
tail.wrapping_sub(head)
}
fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// Split the head value into the real head and the index a stealer is working
/// on.
fn unpack(n: UnsignedLong) -> (UnsignedShort, UnsignedShort) {
let real = n & UnsignedShort::MAX as UnsignedLong;
let steal = n >> (mem::size_of::<UnsignedShort>() * 8);
(steal as UnsignedShort, real as UnsignedShort)
}
/// Join the two head values
fn pack(steal: UnsignedShort, real: UnsignedShort) -> UnsignedLong {
(real as UnsignedLong) | ((steal as UnsignedLong) << (mem::size_of::<UnsignedShort>() * 8))
}
#[test]
fn test_local_queue_capacity() {
assert!(LOCAL_QUEUE_CAPACITY - 1 <= u8::MAX as usize);
}