kurbo/
mindist.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright 2021 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Minimum distance between two Bézier curves
//!
//! This implements the algorithm in "Computing the minimum distance between
//! two Bézier curves", Chen et al., *Journal of Computational and Applied
//! Mathematics* 229(2009), 294-301

use crate::Vec2;
use core::cmp::Ordering;

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

pub(crate) fn min_dist_param(
    bez1: &[Vec2],
    bez2: &[Vec2],
    u: (f64, f64),
    v: (f64, f64),
    epsilon: f64,
    best_alpha: Option<f64>,
) -> (f64, f64, f64) {
    assert!(!bez1.is_empty() && !bez2.is_empty());
    let n = bez1.len() - 1;
    let m = bez2.len() - 1;
    let (umin, umax) = u;
    let (vmin, vmax) = v;
    let umid = (umin + umax) / 2.0;
    let vmid = (vmin + vmax) / 2.0;
    let svalues: [(f64, f64, f64); 4] = [
        (S(umin, vmin, bez1, bez2), umin, vmin),
        (S(umin, vmax, bez1, bez2), umin, vmax),
        (S(umax, vmin, bez1, bez2), umax, vmin),
        (S(umax, vmax, bez1, bez2), umax, vmax),
    ];
    let alpha: f64 = svalues.iter().map(|(a, _, _)| *a).reduce(f64::min).unwrap();
    if let Some(best) = best_alpha {
        if alpha > best {
            return (alpha, umid, vmid);
        }
    }

    if (umax - umin).abs() < epsilon || (vmax - vmin).abs() < epsilon {
        return (alpha, umid, vmid);
    }

    // Property one: D(r>k) > alpha
    let mut is_outside = true;
    let mut min_drk = None;
    let mut min_ij = None;
    for r in 0..(2 * n) {
        for k in 0..(2 * m) {
            let d_rk = D_rk(r, k, bez1, bez2);
            if d_rk < alpha {
                is_outside = false;
            }
            if min_drk.is_none() || Some(d_rk) < min_drk {
                min_drk = Some(d_rk);
                min_ij = Some((r, k));
            }
        }
    }
    if is_outside {
        return (alpha, umid, vmid);
    }

    // Property two: boundary check
    let mut at_boundary0on_bez1 = true;
    let mut at_boundary1on_bez1 = true;
    let mut at_boundary0on_bez2 = true;
    let mut at_boundary1on_bez2 = true;
    for i in 0..2 * n {
        for j in 0..2 * m {
            let dij = D_rk(i, j, bez1, bez2);
            let dkj = D_rk(0, j, bez1, bez2);
            if dij < dkj {
                at_boundary0on_bez1 = false;
            }
            let dkj = D_rk(2 * n, j, bez1, bez2);
            if dij < dkj {
                at_boundary1on_bez1 = false;
            }
            let dkj = D_rk(i, 0, bez1, bez2);
            if dij < dkj {
                at_boundary0on_bez2 = false;
            }
            let dkj = D_rk(i, 2 * m, bez1, bez2);
            if dij < dkj {
                at_boundary1on_bez2 = false;
            }
        }
    }
    if at_boundary0on_bez1 && at_boundary0on_bez2 {
        return svalues[0];
    }
    if at_boundary0on_bez1 && at_boundary1on_bez2 {
        return svalues[1];
    }
    if at_boundary1on_bez1 && at_boundary0on_bez2 {
        return svalues[2];
    }
    if at_boundary1on_bez1 && at_boundary1on_bez2 {
        return svalues[3];
    }

    let (min_i, min_j) = min_ij.unwrap();
    let new_umid = umin + (umax - umin) * (min_i as f64 / (2 * n) as f64);
    let new_vmid = vmin + (vmax - vmin) * (min_j as f64 / (2 * m) as f64);

    // Subdivide
    let results = [
        min_dist_param(
            bez1,
            bez2,
            (umin, new_umid),
            (vmin, new_vmid),
            epsilon,
            Some(alpha),
        ),
        min_dist_param(
            bez1,
            bez2,
            (umin, new_umid),
            (new_vmid, vmax),
            epsilon,
            Some(alpha),
        ),
        min_dist_param(
            bez1,
            bez2,
            (new_umid, umax),
            (vmin, new_vmid),
            epsilon,
            Some(alpha),
        ),
        min_dist_param(
            bez1,
            bez2,
            (new_umid, umax),
            (new_vmid, vmax),
            epsilon,
            Some(alpha),
        ),
    ];

    *results
        .iter()
        .min_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(Ordering::Less))
        .unwrap()
}

// $ S(u,v)=\sum_{r=0}^{2n} \sum _{k=0}^{2m} D_{r,k} B_{2n}^r(u) B_{2m}^k(v) $

#[allow(non_snake_case)]
fn S(u: f64, v: f64, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
    let n = bez1.len() - 1;
    let m = bez2.len() - 1;
    let mut summand = 0.0;
    for r in 0..=2 * n {
        for k in 0..=2 * m {
            summand +=
                D_rk(r, k, bez1, bez2) * basis_function(2 * n, r, u) * basis_function(2 * m, k, v);
        }
    }
    summand
}

// $ C_{r,k} = ( \sum_{i=\theta}^\upsilon P_i C_n^i C_n^{r-i} / C_{2n}^r ) \cdot (\sum_{j=\sigma}^\varsigma Q_j C_m^j C_m^{k-j} / C_{2m}^k ) $
#[allow(non_snake_case)]
fn C_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
    let n = bez1.len() - 1;
    let upsilon = r.min(n);
    let theta = r - n.min(r);
    let mut left: Vec2 = Vec2::ZERO;
    for (i, &item) in bez1.iter().enumerate().take(upsilon + 1).skip(theta) {
        left += item * (choose(n, i) * choose(n, r - i)) as f64 / (choose(2 * n, r) as f64);
    }

    let m = bez2.len() - 1;
    let varsigma = k.min(m);
    let sigma = k - m.min(k);
    let mut right: Vec2 = Vec2::ZERO;
    for (j, &item) in bez2.iter().enumerate().take(varsigma + 1).skip(sigma) {
        right += item * (choose(m, j) * choose(m, k - j)) as f64 / (choose(2 * m, k) as f64);
    }
    left.dot(right)
}

// $ A_r=\sum _{i=\theta} ^\upsilon (P_i \cdot P_{r-i}) C_n^i C_n^{r-i} / C_{2n}^r $
// ($ B_k $ is just the same as $ A_r $ but for the other curve.)

#[allow(non_snake_case)]
fn A_r(r: usize, p: &[Vec2]) -> f64 {
    let n = p.len() - 1;
    let upsilon = r.min(n);
    let theta = r - n.min(r);
    (theta..=upsilon)
        .map(|i| {
            let dot = p[i].dot(p[r - i]); // These are bounds checked by the sum limits
            let factor = (choose(n, i) * choose(n, r - i)) as f64 / (choose(2 * n, r) as f64);
            dot * factor
        })
        .sum()
}

#[allow(non_snake_case)]
fn D_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
    // In the paper, B_k is used for the second factor, but it's the same thing
    A_r(r, bez1) + A_r(k, bez2) - 2.0 * C_rk(r, k, bez1, bez2)
}

// Bezier basis function
fn basis_function(n: usize, i: usize, u: f64) -> f64 {
    choose(n, i) as f64 * (1.0 - u).powi((n - i) as i32) * u.powi(i as i32)
}

// Binomial co-efficient, but returning zeros for values outside of domain
fn choose(n: usize, k: usize) -> u32 {
    let mut n = n;
    if k > n {
        return 0;
    }
    let mut p = 1;
    for i in 1..=(n - k) {
        p *= n;
        p /= i;
        n -= 1;
    }
    p as u32
}

#[cfg(test)]
mod tests {
    use crate::mindist::A_r;
    use crate::mindist::{choose, D_rk};
    use crate::param_curve::ParamCurve;
    use crate::{CubicBez, Line, PathSeg, Vec2};

    #[test]
    fn test_choose() {
        assert_eq!(choose(6, 0), 1);
        assert_eq!(choose(6, 1), 6);
        assert_eq!(choose(6, 2), 15);
    }

    #[test]
    fn test_d_rk() {
        let bez1 = vec![
            Vec2::new(129.0, 139.0),
            Vec2::new(190.0, 139.0),
            Vec2::new(201.0, 364.0),
            Vec2::new(90.0, 364.0),
        ];
        let bez2 = vec![
            Vec2::new(309.0, 159.0),
            Vec2::new(178.0, 159.0),
            Vec2::new(215.0, 408.0),
            Vec2::new(309.0, 408.0),
        ];
        let b = A_r(1, &bez2);
        assert!((b - 80283.0).abs() < 0.005, "B_1(Q)={b:?}");
        let d = D_rk(0, 1, &bez1, &bez2);
        assert!((d - 9220.0).abs() < 0.005, "D={d:?}");
    }

    #[test]
    fn test_mindist() {
        let bez1 = PathSeg::Cubic(CubicBez::new(
            (129.0, 139.0),
            (190.0, 139.0),
            (201.0, 364.0),
            (90.0, 364.0),
        ));
        let bez2 = PathSeg::Cubic(CubicBez::new(
            (309.0, 159.0),
            (178.0, 159.0),
            (215.0, 408.0),
            (309.0, 408.0),
        ));
        let mindist = bez1.min_dist(bez2, 0.001);
        assert!((mindist.distance - 50.9966).abs() < 0.5);
    }

    #[test]
    fn test_overflow() {
        let bez1 = PathSeg::Cubic(CubicBez::new(
            (232.0, 126.0),
            (134.0, 126.0),
            (139.0, 232.0),
            (141.0, 301.0),
        ));
        let bez2 = PathSeg::Line(Line::new((359.0, 416.0), (367.0, 755.0)));
        let mindist = bez1.min_dist(bez2, 0.001);
        assert!((mindist.distance - 246.4731222669117).abs() < 0.5);
    }

    #[test]
    fn test_out_of_order() {
        let bez1 = PathSeg::Cubic(CubicBez::new(
            (287.0, 182.0),
            (346.0, 277.0),
            (356.0, 299.0),
            (359.0, 416.0),
        ));
        let bez2 = PathSeg::Line(Line::new((141.0, 301.0), (152.0, 709.0)));
        let mindist1 = bez1.min_dist(bez2, 0.5);
        let mindist2 = bez2.min_dist(bez1, 0.5);
        assert!((mindist1.distance - mindist2.distance).abs() < 0.5);
    }

    #[test]
    fn test_line_curve() {
        let line = PathSeg::Line(Line::new((929.0, 335.0), (911.0, 340.0)));

        let line_as_bez = PathSeg::Cubic(CubicBez::new(
            line.eval(0.0),
            line.eval(1.0 / 3.0),
            line.eval(2.0 / 3.0),
            line.eval(1.0),
        ));

        let bez2 = PathSeg::Cubic(CubicBez::new(
            (1052.0, 401.0),
            (1048.0, 305.0),
            (1046.0, 216.0),
            (1054.0, 146.0),
        ));
        let mindist_as_bez = line_as_bez.min_dist(bez2, 0.5);
        let mindist_as_line = line.min_dist(bez2, 0.5);
        assert!((mindist_as_line.distance - mindist_as_bez.distance).abs() < 0.5);
    }
}