1use crate::Vec2;
11use core::cmp::Ordering;
12
13#[cfg(not(feature = "std"))]
14use crate::common::FloatFuncs;
15
16pub(crate) fn min_dist_param(
17 bez1: &[Vec2],
18 bez2: &[Vec2],
19 u: (f64, f64),
20 v: (f64, f64),
21 epsilon: f64,
22 best_alpha: Option<f64>,
23) -> (f64, f64, f64) {
24 assert!(!bez1.is_empty() && !bez2.is_empty());
25 let n = bez1.len() - 1;
26 let m = bez2.len() - 1;
27 let (umin, umax) = u;
28 let (vmin, vmax) = v;
29 let umid = (umin + umax) / 2.0;
30 let vmid = (vmin + vmax) / 2.0;
31 let svalues: [(f64, f64, f64); 4] = [
32 (S(umin, vmin, bez1, bez2), umin, vmin),
33 (S(umin, vmax, bez1, bez2), umin, vmax),
34 (S(umax, vmin, bez1, bez2), umax, vmin),
35 (S(umax, vmax, bez1, bez2), umax, vmax),
36 ];
37 let alpha: f64 = svalues.iter().map(|(a, _, _)| *a).reduce(f64::min).unwrap();
38 if let Some(best) = best_alpha {
39 if alpha > best {
40 return (alpha, umid, vmid);
41 }
42 }
43
44 if (umax - umin).abs() < epsilon || (vmax - vmin).abs() < epsilon {
45 return (alpha, umid, vmid);
46 }
47
48 let mut is_outside = true;
50 let mut min_drk = None;
51 let mut min_ij = None;
52 for r in 0..(2 * n) {
53 for k in 0..(2 * m) {
54 let d_rk = D_rk(r, k, bez1, bez2);
55 if d_rk < alpha {
56 is_outside = false;
57 }
58 if min_drk.is_none() || Some(d_rk) < min_drk {
59 min_drk = Some(d_rk);
60 min_ij = Some((r, k));
61 }
62 }
63 }
64 if is_outside {
65 return (alpha, umid, vmid);
66 }
67
68 let mut at_boundary0on_bez1 = true;
70 let mut at_boundary1on_bez1 = true;
71 let mut at_boundary0on_bez2 = true;
72 let mut at_boundary1on_bez2 = true;
73 for i in 0..2 * n {
74 for j in 0..2 * m {
75 let dij = D_rk(i, j, bez1, bez2);
76 let dkj = D_rk(0, j, bez1, bez2);
77 if dij < dkj {
78 at_boundary0on_bez1 = false;
79 }
80 let dkj = D_rk(2 * n, j, bez1, bez2);
81 if dij < dkj {
82 at_boundary1on_bez1 = false;
83 }
84 let dkj = D_rk(i, 0, bez1, bez2);
85 if dij < dkj {
86 at_boundary0on_bez2 = false;
87 }
88 let dkj = D_rk(i, 2 * m, bez1, bez2);
89 if dij < dkj {
90 at_boundary1on_bez2 = false;
91 }
92 }
93 }
94 if at_boundary0on_bez1 && at_boundary0on_bez2 {
95 return svalues[0];
96 }
97 if at_boundary0on_bez1 && at_boundary1on_bez2 {
98 return svalues[1];
99 }
100 if at_boundary1on_bez1 && at_boundary0on_bez2 {
101 return svalues[2];
102 }
103 if at_boundary1on_bez1 && at_boundary1on_bez2 {
104 return svalues[3];
105 }
106
107 let (min_i, min_j) = min_ij.unwrap();
108 let new_umid = umin + (umax - umin) * (min_i as f64 / (2 * n) as f64);
109 let new_vmid = vmin + (vmax - vmin) * (min_j as f64 / (2 * m) as f64);
110
111 let results = [
113 min_dist_param(
114 bez1,
115 bez2,
116 (umin, new_umid),
117 (vmin, new_vmid),
118 epsilon,
119 Some(alpha),
120 ),
121 min_dist_param(
122 bez1,
123 bez2,
124 (umin, new_umid),
125 (new_vmid, vmax),
126 epsilon,
127 Some(alpha),
128 ),
129 min_dist_param(
130 bez1,
131 bez2,
132 (new_umid, umax),
133 (vmin, new_vmid),
134 epsilon,
135 Some(alpha),
136 ),
137 min_dist_param(
138 bez1,
139 bez2,
140 (new_umid, umax),
141 (new_vmid, vmax),
142 epsilon,
143 Some(alpha),
144 ),
145 ];
146
147 *results
148 .iter()
149 .min_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(Ordering::Less))
150 .unwrap()
151}
152
153#[allow(non_snake_case)]
156fn S(u: f64, v: f64, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
157 let n = bez1.len() - 1;
158 let m = bez2.len() - 1;
159 let mut summand = 0.0;
160 for r in 0..=2 * n {
161 for k in 0..=2 * m {
162 summand +=
163 D_rk(r, k, bez1, bez2) * basis_function(2 * n, r, u) * basis_function(2 * m, k, v);
164 }
165 }
166 summand
167}
168
169#[allow(non_snake_case)]
171fn C_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
172 let n = bez1.len() - 1;
173 let upsilon = r.min(n);
174 let theta = r - n.min(r);
175 let mut left: Vec2 = Vec2::ZERO;
176 for (i, &item) in bez1.iter().enumerate().take(upsilon + 1).skip(theta) {
177 left += item * (choose(n, i) * choose(n, r - i)) as f64 / (choose(2 * n, r) as f64);
178 }
179
180 let m = bez2.len() - 1;
181 let varsigma = k.min(m);
182 let sigma = k - m.min(k);
183 let mut right: Vec2 = Vec2::ZERO;
184 for (j, &item) in bez2.iter().enumerate().take(varsigma + 1).skip(sigma) {
185 right += item * (choose(m, j) * choose(m, k - j)) as f64 / (choose(2 * m, k) as f64);
186 }
187 left.dot(right)
188}
189
190#[allow(non_snake_case)]
194fn A_r(r: usize, p: &[Vec2]) -> f64 {
195 let n = p.len() - 1;
196 let upsilon = r.min(n);
197 let theta = r - n.min(r);
198 (theta..=upsilon)
199 .map(|i| {
200 let dot = p[i].dot(p[r - i]); let factor = (choose(n, i) * choose(n, r - i)) as f64 / (choose(2 * n, r) as f64);
202 dot * factor
203 })
204 .sum()
205}
206
207#[allow(non_snake_case)]
208fn D_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 {
209 A_r(r, bez1) + A_r(k, bez2) - 2.0 * C_rk(r, k, bez1, bez2)
211}
212
213fn basis_function(n: usize, i: usize, u: f64) -> f64 {
215 choose(n, i) as f64 * (1.0 - u).powi((n - i) as i32) * u.powi(i as i32)
216}
217
218fn choose(n: usize, k: usize) -> u32 {
220 let mut n = n;
221 if k > n {
222 return 0;
223 }
224 let mut p = 1;
225 for i in 1..=(n - k) {
226 p *= n;
227 p /= i;
228 n -= 1;
229 }
230 p as u32
231}
232
233#[cfg(test)]
234mod tests {
235 use crate::mindist::A_r;
236 use crate::mindist::{choose, D_rk};
237 use crate::param_curve::ParamCurve;
238 use crate::{CubicBez, Line, PathSeg, Vec2};
239
240 #[test]
241 fn test_choose() {
242 assert_eq!(choose(6, 0), 1);
243 assert_eq!(choose(6, 1), 6);
244 assert_eq!(choose(6, 2), 15);
245 }
246
247 #[test]
248 fn test_d_rk() {
249 let bez1 = vec![
250 Vec2::new(129.0, 139.0),
251 Vec2::new(190.0, 139.0),
252 Vec2::new(201.0, 364.0),
253 Vec2::new(90.0, 364.0),
254 ];
255 let bez2 = vec![
256 Vec2::new(309.0, 159.0),
257 Vec2::new(178.0, 159.0),
258 Vec2::new(215.0, 408.0),
259 Vec2::new(309.0, 408.0),
260 ];
261 let b = A_r(1, &bez2);
262 assert!((b - 80283.0).abs() < 0.005, "B_1(Q)={b:?}");
263 let d = D_rk(0, 1, &bez1, &bez2);
264 assert!((d - 9220.0).abs() < 0.005, "D={d:?}");
265 }
266
267 #[test]
268 fn test_mindist() {
269 let bez1 = PathSeg::Cubic(CubicBez::new(
270 (129.0, 139.0),
271 (190.0, 139.0),
272 (201.0, 364.0),
273 (90.0, 364.0),
274 ));
275 let bez2 = PathSeg::Cubic(CubicBez::new(
276 (309.0, 159.0),
277 (178.0, 159.0),
278 (215.0, 408.0),
279 (309.0, 408.0),
280 ));
281 let mindist = bez1.min_dist(bez2, 0.001);
282 assert!((mindist.distance - 50.9966).abs() < 0.5);
283 }
284
285 #[test]
286 fn test_overflow() {
287 let bez1 = PathSeg::Cubic(CubicBez::new(
288 (232.0, 126.0),
289 (134.0, 126.0),
290 (139.0, 232.0),
291 (141.0, 301.0),
292 ));
293 let bez2 = PathSeg::Line(Line::new((359.0, 416.0), (367.0, 755.0)));
294 let mindist = bez1.min_dist(bez2, 0.001);
295 assert!((mindist.distance - 246.4731222669117).abs() < 0.5);
296 }
297
298 #[test]
299 fn test_out_of_order() {
300 let bez1 = PathSeg::Cubic(CubicBez::new(
301 (287.0, 182.0),
302 (346.0, 277.0),
303 (356.0, 299.0),
304 (359.0, 416.0),
305 ));
306 let bez2 = PathSeg::Line(Line::new((141.0, 301.0), (152.0, 709.0)));
307 let mindist1 = bez1.min_dist(bez2, 0.5);
308 let mindist2 = bez2.min_dist(bez1, 0.5);
309 assert!((mindist1.distance - mindist2.distance).abs() < 0.5);
310 }
311
312 #[test]
313 fn test_line_curve() {
314 let line = PathSeg::Line(Line::new((929.0, 335.0), (911.0, 340.0)));
315
316 let line_as_bez = PathSeg::Cubic(CubicBez::new(
317 line.eval(0.0),
318 line.eval(1.0 / 3.0),
319 line.eval(2.0 / 3.0),
320 line.eval(1.0),
321 ));
322
323 let bez2 = PathSeg::Cubic(CubicBez::new(
324 (1052.0, 401.0),
325 (1048.0, 305.0),
326 (1046.0, 216.0),
327 (1054.0, 146.0),
328 ));
329 let mindist_as_bez = line_as_bez.min_dist(bez2, 0.5);
330 let mindist_as_line = line.min_dist(bez2, 0.5);
331 assert!((mindist_as_line.distance - mindist_as_bez.distance).abs() < 0.5);
332 }
333}