kurbo/
translate_scale.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! A transformation that includes both scale and translation.

use core::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};

use crate::{
    Affine, Circle, CubicBez, Line, Point, QuadBez, Rect, RoundedRect, RoundedRectRadii, Vec2,
};

/// A transformation consisting of a uniform scaling followed by a translation.
///
/// If the translation is `(x, y)` and the scale is `s`, then this
/// transformation represents this augmented matrix:
///
/// ```text
/// | s 0 x |
/// | 0 s y |
/// | 0 0 1 |
/// ```
///
/// See [`Affine`] for more details about the
/// equivalence with augmented matrices.
///
/// Various multiplication ops are defined, and these are all defined
/// to be consistent with matrix multiplication. Therefore,
/// `TranslateScale * Point` is defined but not the other way around.
///
/// Also note that multiplication is not commutative. Thus,
/// `TranslateScale::scale(2.0) * TranslateScale::translate(Vec2::new(1.0, 0.0))`
/// has a translation of (2, 0), while
/// `TranslateScale::translate(Vec2::new(1.0, 0.0)) * TranslateScale::scale(2.0)`
/// has a translation of (1, 0). (Both have a scale of 2; also note that
/// the first case can be written
/// `2.0 * TranslateScale::translate(Vec2::new(1.0, 0.0))` as this case
/// has an implicit conversion).
///
/// This transformation is less powerful than [`Affine`], but can be applied
/// to more primitives, especially including [`Rect`].
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TranslateScale {
    /// The translation component of this transformation
    pub translation: Vec2,
    /// The scale component of this transformation
    pub scale: f64,
}

impl TranslateScale {
    /// Create a new transformation from translation and scale.
    #[inline]
    pub const fn new(translation: Vec2, scale: f64) -> TranslateScale {
        TranslateScale { translation, scale }
    }

    /// Create a new transformation with scale only.
    #[inline]
    pub const fn scale(s: f64) -> TranslateScale {
        TranslateScale::new(Vec2::ZERO, s)
    }

    /// Create a new transformation with translation only.
    #[inline]
    pub fn translate(translation: impl Into<Vec2>) -> TranslateScale {
        TranslateScale::new(translation.into(), 1.0)
    }

    /// Decompose transformation into translation and scale.
    #[deprecated(note = "use the struct fields directly")]
    #[inline]
    pub const fn as_tuple(self) -> (Vec2, f64) {
        (self.translation, self.scale)
    }

    /// Create a transform that scales about a point other than the origin.
    ///
    /// # Examples
    ///
    /// ```
    /// # use kurbo::{Point, TranslateScale};
    /// # fn assert_near(p0: Point, p1: Point) {
    /// #   assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
    /// # }
    /// let center = Point::new(1., 1.);
    /// let ts = TranslateScale::from_scale_about(2., center);
    /// // Should keep the point (1., 1.) stationary
    /// assert_near(ts * center, center);
    /// // (2., 2.) -> (3., 3.)
    /// assert_near(ts * Point::new(2., 2.), Point::new(3., 3.));
    /// ```
    #[inline]
    pub fn from_scale_about(scale: f64, focus: impl Into<Point>) -> Self {
        // We need to create a transform that is equivalent to translating `focus`
        // to the origin, followed by a normal scale, followed by reversing the translation.
        // We need to find the (translation ∘ scale) that matches this.
        let focus = focus.into().to_vec2();
        let translation = focus - focus * scale;
        Self::new(translation, scale)
    }

    /// Compute the inverse transform.
    ///
    /// Multiplying a transform with its inverse (either on the
    /// left or right) results in the identity transform
    /// (modulo floating point rounding errors).
    ///
    /// Produces NaN values when scale is zero.
    #[inline]
    pub fn inverse(self) -> TranslateScale {
        let scale_recip = self.scale.recip();
        TranslateScale {
            translation: self.translation * -scale_recip,
            scale: scale_recip,
        }
    }

    /// Is this translate/scale [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.translation.is_finite() && self.scale.is_finite()
    }

    /// Is this translate/scale [NaN]?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.translation.is_nan() || self.scale.is_nan()
    }
}

impl Default for TranslateScale {
    #[inline]
    fn default() -> TranslateScale {
        TranslateScale::new(Vec2::ZERO, 1.0)
    }
}

impl From<TranslateScale> for Affine {
    fn from(ts: TranslateScale) -> Affine {
        let TranslateScale { translation, scale } = ts;
        Affine::new([scale, 0.0, 0.0, scale, translation.x, translation.y])
    }
}

impl Mul<Point> for TranslateScale {
    type Output = Point;

    #[inline]
    fn mul(self, other: Point) -> Point {
        (self.scale * other.to_vec2()).to_point() + self.translation
    }
}

impl Mul for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn mul(self, other: TranslateScale) -> TranslateScale {
        TranslateScale {
            translation: self.translation + self.scale * other.translation,
            scale: self.scale * other.scale,
        }
    }
}

impl MulAssign for TranslateScale {
    #[inline]
    fn mul_assign(&mut self, other: TranslateScale) {
        *self = self.mul(other);
    }
}

impl Mul<TranslateScale> for f64 {
    type Output = TranslateScale;

    #[inline]
    fn mul(self, other: TranslateScale) -> TranslateScale {
        TranslateScale {
            translation: other.translation * self,
            scale: other.scale * self,
        }
    }
}

impl Add<Vec2> for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn add(self, other: Vec2) -> TranslateScale {
        TranslateScale {
            translation: self.translation + other,
            scale: self.scale,
        }
    }
}

impl Add<TranslateScale> for Vec2 {
    type Output = TranslateScale;

    #[inline]
    fn add(self, other: TranslateScale) -> TranslateScale {
        other + self
    }
}

impl AddAssign<Vec2> for TranslateScale {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = self.add(other);
    }
}

impl Sub<Vec2> for TranslateScale {
    type Output = TranslateScale;

    #[inline]
    fn sub(self, other: Vec2) -> TranslateScale {
        TranslateScale {
            translation: self.translation - other,
            scale: self.scale,
        }
    }
}

impl SubAssign<Vec2> for TranslateScale {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = self.sub(other);
    }
}

impl Mul<Circle> for TranslateScale {
    type Output = Circle;

    #[inline]
    fn mul(self, other: Circle) -> Circle {
        Circle::new(self * other.center, self.scale * other.radius)
    }
}

impl Mul<Line> for TranslateScale {
    type Output = Line;

    #[inline]
    fn mul(self, other: Line) -> Line {
        Line::new(self * other.p0, self * other.p1)
    }
}

impl Mul<Rect> for TranslateScale {
    type Output = Rect;

    #[inline]
    fn mul(self, other: Rect) -> Rect {
        let pt0 = self * Point::new(other.x0, other.y0);
        let pt1 = self * Point::new(other.x1, other.y1);
        (pt0, pt1).into()
    }
}

impl Mul<RoundedRect> for TranslateScale {
    type Output = RoundedRect;

    #[inline]
    fn mul(self, other: RoundedRect) -> RoundedRect {
        RoundedRect::from_rect(self * other.rect(), self * other.radii())
    }
}

impl Mul<RoundedRectRadii> for TranslateScale {
    type Output = RoundedRectRadii;

    #[inline]
    fn mul(self, other: RoundedRectRadii) -> RoundedRectRadii {
        RoundedRectRadii::new(
            self.scale * other.top_left,
            self.scale * other.top_right,
            self.scale * other.bottom_right,
            self.scale * other.bottom_left,
        )
    }
}

impl Mul<QuadBez> for TranslateScale {
    type Output = QuadBez;

    #[inline]
    fn mul(self, other: QuadBez) -> QuadBez {
        QuadBez::new(self * other.p0, self * other.p1, self * other.p2)
    }
}

impl Mul<CubicBez> for TranslateScale {
    type Output = CubicBez;

    #[inline]
    fn mul(self, other: CubicBez) -> CubicBez {
        CubicBez::new(
            self * other.p0,
            self * other.p1,
            self * other.p2,
            self * other.p3,
        )
    }
}

#[cfg(test)]
mod tests {
    use crate::{Affine, Point, TranslateScale, Vec2};

    fn assert_near(p0: Point, p1: Point) {
        assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
    }

    #[test]
    fn translate_scale() {
        let p = Point::new(3.0, 4.0);
        let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0);

        assert_near(ts * p, Point::new(11.0, 14.0));
    }

    #[test]
    fn conversions() {
        let p = Point::new(3.0, 4.0);
        let s = 2.0;
        let t = Vec2::new(5.0, 6.0);
        let ts = TranslateScale::new(t, s);

        // Test that conversion to affine is consistent.
        let a: Affine = ts.into();
        assert_near(ts * p, a * p);

        assert_near((s * p.to_vec2()).to_point(), TranslateScale::scale(s) * p);
        assert_near(p + t, TranslateScale::translate(t) * p);
    }

    #[test]
    fn inverse() {
        let p = Point::new(3.0, 4.0);
        let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0);

        assert_near(p, (ts * ts.inverse()) * p);
        assert_near(p, (ts.inverse() * ts) * p);
    }
}