lyon_path/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#![doc(html_logo_url = "https://nical.github.io/lyon-doc/lyon-logo.svg")]
#![deny(bare_trait_objects)]
#![deny(unconditional_recursion)]
#![allow(clippy::match_like_matches_macro)]
#![no_std]

//! Data structures and traits to work with paths (vector graphics).
//!
//! To build and consume paths, see the [builder](builder/index.html) and
//! [iterator](iterator/index.html) modules.
//!
//! This crate is reexported in [lyon](https://docs.rs/lyon/).
//!
//! # Examples
//!
//! ```
//! # extern crate lyon_path;
//! # fn main() {
//! use lyon_path::Path;
//! use lyon_path::math::{point};
//! use lyon_path::builder::*;
//!
//! // Create a builder object to build the path.
//! let mut builder = Path::builder();
//!
//! // Build a simple path.
//! let mut builder = Path::builder();
//! builder.begin(point(0.0, 0.0));
//! builder.line_to(point(1.0, 2.0));
//! builder.line_to(point(2.0, 0.0));
//! builder.line_to(point(1.0, 1.0));
//! builder.close();
//!
//! // Generate the actual path object.
//! let path = builder.build();
//!
//! for event in &path {
//!     println!("{:?}", event);
//! }
//! # }
//! ```
//!

extern crate alloc;

#[cfg(any(test, feature = "std"))]
extern crate std;

pub use lyon_geom as geom;

#[cfg(feature = "serialization")]
#[macro_use]
pub extern crate serde;

pub mod builder;
pub mod commands;
mod events;
pub mod iterator;
// TODO: remove "pub" on mod path to avoid redundant  "use lyon::path::path::Path" in user code
//       breaking change would require 1.1 bump?
pub mod path;
pub use path::*;
pub mod path_buffer;
pub mod polygon;

#[doc(hidden)]
pub mod private;

#[doc(inline)]
pub use crate::commands::{PathCommands, PathCommandsSlice};
pub use crate::events::*;
pub use crate::geom::ArcFlags;
#[doc(inline)]
pub use crate::path::{Path, PathSlice};
#[doc(inline)]
pub use crate::path_buffer::{PathBuffer, PathBufferSlice};
#[doc(inline)]
pub use crate::polygon::{IdPolygon, Polygon};

use core::fmt;
use math::Point;

pub mod traits {
    //! `lyon_path` traits reexported here for convenience.

    pub use crate::builder::Build;
    pub use crate::builder::PathBuilder;
    pub use crate::builder::SvgPathBuilder;
    pub use crate::iterator::PathIterator;
}

pub mod math {
    //! f32 version of the lyon_geom types used everywhere. Most other lyon crates
    //! reexport them.

    use crate::geom::euclid;

    /// Alias for ```euclid::default::Point2D<f32>```.
    pub type Point = euclid::default::Point2D<f32>;

    /// Alias for ```euclid::default::Point2D<f32>```.
    pub type Vector = euclid::default::Vector2D<f32>;

    /// Alias for ```euclid::default::Size2D<f32>```.
    pub type Size = euclid::default::Size2D<f32>;

    /// Alias for ```euclid::default::Box2D<f32>```
    pub type Box2D = euclid::default::Box2D<f32>;

    /// Alias for ```euclid::default::Transform2D<f32>```
    pub type Transform = euclid::default::Transform2D<f32>;

    /// Alias for ```euclid::default::Rotation2D<f32>```
    pub type Rotation = euclid::default::Rotation2D<f32>;

    /// Alias for ```euclid::default::Translation2D<f32>```
    pub type Translation = euclid::Translation2D<f32, euclid::UnknownUnit, euclid::UnknownUnit>;

    /// Alias for ```euclid::default::Scale<f32>```
    pub type Scale = euclid::default::Scale<f32>;

    /// An angle in radians (f32).
    pub type Angle = euclid::Angle<f32>;

    /// Shorthand for `Vector::new(x, y)`.
    #[inline]
    pub fn vector(x: f32, y: f32) -> Vector {
        Vector::new(x, y)
    }

    /// Shorthand for `Point::new(x, y)`.
    #[inline]
    pub fn point(x: f32, y: f32) -> Point {
        Point::new(x, y)
    }

    /// Shorthand for `Size::new(x, y)`.
    #[inline]
    pub fn size(w: f32, h: f32) -> Size {
        Size::new(w, h)
    }
}

/// Line cap as defined by the SVG specification.
///
/// See: <https://svgwg.org/specs/strokes/#StrokeLinecapProperty>
///
/// <svg viewBox="0 0 400 399.99998" height="400" width="400">
///   <g transform="translate(0,-652.36229)">
///     <path style="opacity:1;fill:#80b3ff;stroke:#000000;stroke-width:1;stroke-linejoin:round;" d="m 240,983 a 30,30 0 0 1 -25,-15 30,30 0 0 1 0,-30.00001 30,30 0 0 1 25.98076,-15 l 0,30 z"/>
///     <path style="fill:#80b3ff;stroke:#000000;stroke-width:1px;stroke-linecap:butt;" d="m 390,782.6 -150,0 0,-60 150,0.5"/>
///     <circle style="opacity:1;fill:#ff7f2a;stroke:#000000;stroke-width:1;stroke-linejoin:round;" r="10" cy="752.89227" cx="240.86813"/>
///     <path style="fill:none;stroke:#000000;stroke-width:1px;stroke-linejoin:round;" d="m 240,722.6 150,60"/>
///     <path style="fill:#80b3ff;stroke:#000000;stroke-width:1px;stroke-linecap:butt;" d="m 390,882 -180,0 0,-60 180,0.4"/>
///     <circle style="opacity:1;fill:#ff7f2a;stroke:#000000;stroke-width:1;stroke-linejoin:round;" cx="239.86813" cy="852.20868" r="10" />
///     <path style="fill:none;stroke:#000000;stroke-width:1px;stroke-linejoin:round;" d="m 210.1,822.3 180,60"/>
///     <path style="fill:#80b3ff;stroke:#000000;stroke-width:1px;stroke-linecap:butt;" d="m 390,983 -150,0 0,-60 150,0.4"/>
///     <circle style="opacity:1;fill:#ff7f2a;stroke:#000000;stroke-width:1;stroke-linejoin:round;" cx="239.86813" cy="953.39734" r="10" />
///     <path style="fill:none;stroke:#000000;stroke-width:1px;stroke-linejoin:round;" d="m 390,983 -150,-60 L 210,953 l 30,30 -21.5,-9.5 L 210,953 218.3,932.5 240,923.4"/>
///     <text y="757.61273" x="183.65314" style="font-style:normal;font-weight:normal;font-size:20px;line-height:125%;font-family:Sans;text-align:end;text-anchor:end;fill:#000000;stroke:none;">
///        <tspan y="757.61273" x="183.65314">LineCap::Butt</tspan>
///        <tspan y="857.61273" x="183.65314">LineCap::Square</tspan>
///        <tspan y="957.61273" x="183.65314">LineCap::Round</tspan>
///      </text>
///   </g>
/// </svg>
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub enum LineCap {
    /// The stroke for each sub-path does not extend beyond its two endpoints.
    /// A zero length sub-path will therefore not have any stroke.
    Butt,
    /// At the end of each sub-path, the shape representing the stroke will be
    /// extended by a rectangle with the same width as the stroke width and
    /// whose length is half of the stroke width. If a sub-path has zero length,
    /// then the resulting effect is that the stroke for that sub-path consists
    /// solely of a square with side length equal to the stroke width, centered
    /// at the sub-path's point.
    Square,
    /// At each end of each sub-path, the shape representing the stroke will be extended
    /// by a half circle with a radius equal to the stroke width.
    /// If a sub-path has zero length, then the resulting effect is that the stroke for
    /// that sub-path consists solely of a full circle centered at the sub-path's point.
    Round,
}

/// Line join as defined by the SVG specification.
///
/// See: <https://svgwg.org/specs/strokes/#StrokeLinejoinProperty>
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub enum LineJoin {
    /// A sharp corner is to be used to join path segments.
    Miter,
    /// Same as a miter join, but if the miter limit is exceeded,
    /// the miter is clipped at a miter length equal to the miter limit value
    /// multiplied by the stroke width.
    MiterClip,
    /// A round corner is to be used to join path segments.
    Round,
    /// A beveled corner is to be used to join path segments.
    /// The bevel shape is a triangle that fills the area between the two stroked
    /// segments.
    Bevel,
}

/// The positive or negative side of a vector or segment.
///
/// Given a reference vector `v0`, a vector `v1` is on the positive side
/// if the sign of the cross product `v0 x v1` is positive.
///
/// This type does not use the left/right terminology to avoid confusion with
/// left-handed / right-handed coordinate systems. Right-handed coordinate systems
/// seem to be what a lot of people are most familiar with (especially in 2D), however
/// most vector graphics specifications use y-down left-handed coordinate systems.
/// Unfortunately mirroring the y axis inverts the meaning of "left" and "right", which
/// causes confusion. In practice:
///
/// - In a y-down left-handed coordinate system such as `SVG`'s, `Side::Positive` is the right side.
/// - In a y-up right-handed coordinate system, `Side::Positive` is the left side.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub enum Side {
    Positive,
    Negative,
}

impl Side {
    #[inline]
    pub fn opposite(self) -> Self {
        match self {
            Side::Positive => Side::Negative,
            Side::Negative => Side::Positive,
        }
    }

    #[inline]
    pub fn is_positive(self) -> bool {
        self == Side::Positive
    }

    #[inline]
    pub fn is_negative(self) -> bool {
        self == Side::Negative
    }

    #[inline]
    pub fn to_f32(self) -> f32 {
        match self {
            Side::Positive => 1.0,
            Side::Negative => -1.0,
        }
    }
}

/// The fill rule defines how to determine what is inside and what is outside of the shape.
///
/// See the SVG specification.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub enum FillRule {
    EvenOdd,
    NonZero,
}

impl FillRule {
    #[inline]
    pub fn is_in(&self, winding_number: i16) -> bool {
        match *self {
            FillRule::EvenOdd => winding_number % 2 != 0,
            FillRule::NonZero => winding_number != 0,
        }
    }

    #[inline]
    pub fn is_out(&self, winding_number: i16) -> bool {
        !self.is_in(winding_number)
    }
}

/// The two possible orientations for the edges of a shape to be built in.
///
/// Positive winding corresponds to the positive orientation in trigonometry.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub enum Winding {
    Positive,
    Negative,
}

/// ID of a control point in a path.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct ControlPointId(pub u32);

impl ControlPointId {
    pub const INVALID: Self = ControlPointId(u32::MAX);
    pub fn offset(self) -> usize {
        self.0 as usize
    }
    pub fn to_usize(self) -> usize {
        self.0 as usize
    }
    pub fn from_usize(val: usize) -> Self {
        ControlPointId(val as u32)
    }
}

impl fmt::Debug for ControlPointId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "#{}", self.0)
    }
}

/// ID of an endpoint point in a path.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct EndpointId(pub u32);
impl EndpointId {
    pub const INVALID: Self = EndpointId(u32::MAX);
    pub fn offset(self) -> usize {
        self.0 as usize
    }
    pub fn to_usize(self) -> usize {
        self.0 as usize
    }
    pub fn from_usize(val: usize) -> Self {
        EndpointId(val as u32)
    }
}

impl fmt::Debug for EndpointId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "#{}", self.0)
    }
}

/// Refers to an event in a path.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct EventId(#[doc(hidden)] pub u32);

impl EventId {
    pub const INVALID: Self = EventId(u32::MAX);
    pub fn to_usize(self) -> usize {
        self.0 as usize
    }
}

/// Interface for types types (typically endpoints and control points) that have
/// a 2D position.
pub trait Position {
    fn position(&self) -> Point;
}

impl<U> Position for crate::geom::euclid::Point2D<f32, U> {
    fn position(&self) -> Point {
        self.to_untyped()
    }
}

impl<'l, T: Position> Position for &'l T {
    fn position(&self) -> Point {
        (*self).position()
    }
}

impl Position for (f32, f32) {
    fn position(&self) -> Point {
        Point::new(self.0, self.1)
    }
}

impl Position for [f32; 2] {
    fn position(&self) -> Point {
        Point::new(self[0], self[1])
    }
}

impl<T> Position for (Point, T) {
    fn position(&self) -> Point {
        self.0
    }
}

/// Interface for objects storing endpoints and control points positions.
///
/// This interface can be implemented by path objects themselves or via external
/// data structures.
pub trait PositionStore {
    fn get_endpoint(&self, id: EndpointId) -> Point;
    fn get_control_point(&self, id: ControlPointId) -> Point;
}

impl<'l> PositionStore for (&'l [Point], &'l [Point]) {
    fn get_endpoint(&self, id: EndpointId) -> Point {
        self.0[id.to_usize()]
    }
    fn get_control_point(&self, id: ControlPointId) -> Point {
        self.1[id.to_usize()]
    }
}

/// Interface for objects storing custom attributes associated with endpoints.
///
/// This interface can be implemented by path objects themselves or via external
/// data structures.
pub trait AttributeStore {
    /// Returns the endpoint's custom attributes as a slice of 32 bits floats.
    ///
    /// The size of the slice must be equal to the result of `num_attributes()`.
    fn get(&self, id: EndpointId) -> Attributes;

    /// Returns the number of float attributes per endpoint.
    ///
    /// All endpoints must have the same number of attributes.
    fn num_attributes(&self) -> usize;
}

impl AttributeStore for () {
    fn get(&self, _: EndpointId) -> Attributes {
        NO_ATTRIBUTES
    }

    fn num_attributes(&self) -> usize {
        0
    }
}

/// A view over a contiguous storage of custom attributes.
pub struct AttributeSlice<'l> {
    data: &'l [f32],
    stride: usize,
}

impl<'l> AttributeSlice<'l> {
    pub fn new(data: &'l [f32], num_attributes: usize) -> Self {
        AttributeSlice {
            data,
            stride: num_attributes,
        }
    }
}

impl<'l> AttributeStore for AttributeSlice<'l> {
    fn get(&self, id: EndpointId) -> Attributes {
        let start = id.to_usize() * self.stride;
        let end = start + self.stride;
        &self.data[start..end]
    }

    fn num_attributes(&self) -> usize {
        self.stride
    }
}

/// An alias for `usize`.
pub type AttributeIndex = usize;
/// An alias for a slice of `f32` values.
pub type Attributes<'l> = &'l [f32];
/// An empty attribute slice.
pub const NO_ATTRIBUTES: Attributes<'static> = &[];