image/imageops/
sample.rs

1//! Functions and filters for the sampling of pixels.
2
3// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
4// for some of the theory behind image scaling and convolution
5
6use std::f32;
7
8use num_traits::{NumCast, ToPrimitive, Zero};
9#[cfg(feature = "serde")]
10use serde::{Deserialize, Serialize};
11
12use crate::image::{GenericImage, GenericImageView};
13use crate::traits::{Enlargeable, Pixel, Primitive};
14use crate::utils::clamp;
15use crate::{ImageBuffer, Rgba32FImage};
16
17/// Available Sampling Filters.
18///
19/// ## Examples
20///
21/// To test the different sampling filters on a real example, you can find two
22/// examples called
23/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
24/// and
25/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
26/// in the `examples` directory of the crate source code.
27///
28/// Here is a 3.58 MiB
29/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
30/// that has been scaled down to 300x225 px:
31///
32/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
33/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
34///   <div style="margin: 0 8px 8px 0;">
35///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
36///     Nearest Neighbor
37///   </div>
38///   <div style="margin: 0 8px 8px 0;">
39///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
40///     Linear: Triangle
41///   </div>
42///   <div style="margin: 0 8px 8px 0;">
43///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
44///     Cubic: Catmull-Rom
45///   </div>
46///   <div style="margin: 0 8px 8px 0;">
47///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
48///     Gaussian
49///   </div>
50///   <div style="margin: 0 8px 8px 0;">
51///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
52///     Lanczos with window 3
53///   </div>
54/// </div>
55///
56/// ## Speed
57///
58/// Time required to create each of the examples above, tested on an Intel
59/// i7-4770 CPU with Rust 1.37 in release mode:
60///
61/// <table style="width: auto;">
62///   <tr>
63///     <th>Nearest</th>
64///     <td>31 ms</td>
65///   </tr>
66///   <tr>
67///     <th>Triangle</th>
68///     <td>414 ms</td>
69///   </tr>
70///   <tr>
71///     <th>CatmullRom</th>
72///     <td>817 ms</td>
73///   </tr>
74///   <tr>
75///     <th>Gaussian</th>
76///     <td>1180 ms</td>
77///   </tr>
78///   <tr>
79///     <th>Lanczos3</th>
80///     <td>1170 ms</td>
81///   </tr>
82/// </table>
83#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
84#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
85pub enum FilterType {
86    /// Nearest Neighbor
87    Nearest,
88
89    /// Linear Filter
90    Triangle,
91
92    /// Cubic Filter
93    CatmullRom,
94
95    /// Gaussian Filter
96    Gaussian,
97
98    /// Lanczos with window 3
99    Lanczos3,
100}
101
102/// A Representation of a separable filter.
103pub(crate) struct Filter<'a> {
104    /// The filter's filter function.
105    pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
106
107    /// The window on which this filter operates.
108    pub(crate) support: f32,
109}
110
111struct FloatNearest(f32);
112
113// to_i64, to_u64, and to_f64 implicitly affect all other lower conversions.
114// Note that to_f64 by default calls to_i64 and thus needs to be overridden.
115impl ToPrimitive for FloatNearest {
116    // to_{i,u}64 is required, to_{i,u}{8,16} are useful.
117    // If a usecase for full 32 bits is found its trivial to add
118    fn to_i8(&self) -> Option<i8> {
119        self.0.round().to_i8()
120    }
121    fn to_i16(&self) -> Option<i16> {
122        self.0.round().to_i16()
123    }
124    fn to_i64(&self) -> Option<i64> {
125        self.0.round().to_i64()
126    }
127    fn to_u8(&self) -> Option<u8> {
128        self.0.round().to_u8()
129    }
130    fn to_u16(&self) -> Option<u16> {
131        self.0.round().to_u16()
132    }
133    fn to_u64(&self) -> Option<u64> {
134        self.0.round().to_u64()
135    }
136    fn to_f64(&self) -> Option<f64> {
137        self.0.to_f64()
138    }
139}
140
141// sinc function: the ideal sampling filter.
142fn sinc(t: f32) -> f32 {
143    let a = t * f32::consts::PI;
144
145    if t == 0.0 {
146        1.0
147    } else {
148        a.sin() / a
149    }
150}
151
152// lanczos kernel function. A windowed sinc function.
153fn lanczos(x: f32, t: f32) -> f32 {
154    if x.abs() < t {
155        sinc(x) * sinc(x / t)
156    } else {
157        0.0
158    }
159}
160
161// Calculate a splice based on the b and c parameters.
162// from authors Mitchell and Netravali.
163fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
164    let a = x.abs();
165
166    let k = if a < 1.0 {
167        (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
168            + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
169            + (6.0 - 2.0 * b)
170    } else if a < 2.0 {
171        (-b - 6.0 * c) * a.powi(3)
172            + (6.0 * b + 30.0 * c) * a.powi(2)
173            + (-12.0 * b - 48.0 * c) * a
174            + (8.0 * b + 24.0 * c)
175    } else {
176        0.0
177    };
178
179    k / 6.0
180}
181
182/// The Gaussian Function.
183/// ```r``` is the standard deviation.
184pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
185    ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
186}
187
188/// Calculate the lanczos kernel with a window of 3
189pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
190    lanczos(x, 3.0)
191}
192
193/// Calculate the gaussian function with a
194/// standard deviation of 0.5
195pub(crate) fn gaussian_kernel(x: f32) -> f32 {
196    gaussian(x, 0.5)
197}
198
199/// Calculate the Catmull-Rom cubic spline.
200/// Also known as a form of `BiCubic` sampling in two dimensions.
201pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
202    bc_cubic_spline(x, 0.0, 0.5)
203}
204
205/// Calculate the triangle function.
206/// Also known as `BiLinear` sampling in two dimensions.
207pub(crate) fn triangle_kernel(x: f32) -> f32 {
208    if x.abs() < 1.0 {
209        1.0 - x.abs()
210    } else {
211        0.0
212    }
213}
214
215/// Calculate the box kernel.
216/// Only pixels inside the box should be considered, and those
217/// contribute equally.  So this method simply returns 1.
218pub(crate) fn box_kernel(_x: f32) -> f32 {
219    1.0
220}
221
222// Sample the rows of the supplied image using the provided filter.
223// The height of the image remains unchanged.
224// ```new_width``` is the desired width of the new image
225// ```filter``` is the filter to use for sampling.
226// ```image``` is not necessarily Rgba and the order of channels is passed through.
227//
228// Note: if an empty image is passed in, panics unless the image is truly empty.
229fn horizontal_sample<P, S>(
230    image: &Rgba32FImage,
231    new_width: u32,
232    filter: &mut Filter,
233) -> ImageBuffer<P, Vec<S>>
234where
235    P: Pixel<Subpixel = S> + 'static,
236    S: Primitive + 'static,
237{
238    let (width, height) = image.dimensions();
239    // This is protection against a memory usage similar to #2340. See `vertical_sample`.
240    assert!(
241        // Checks the implication: (width == 0) -> (height == 0)
242        width != 0 || height == 0,
243        "Unexpected prior allocation size. This case should have been handled by the caller"
244    );
245
246    let mut out = ImageBuffer::new(new_width, height);
247    let mut ws = Vec::new();
248
249    let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
250    let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
251    let ratio = width as f32 / new_width as f32;
252    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
253    let src_support = filter.support * sratio;
254
255    for outx in 0..new_width {
256        // Find the point in the input image corresponding to the centre
257        // of the current pixel in the output image.
258        let inputx = (outx as f32 + 0.5) * ratio;
259
260        // Left and right are slice bounds for the input pixels relevant
261        // to the output pixel we are calculating.  Pixel x is relevant
262        // if and only if (x >= left) && (x < right).
263
264        // Invariant: 0 <= left < right <= width
265
266        let left = (inputx - src_support).floor() as i64;
267        let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
268
269        let right = (inputx + src_support).ceil() as i64;
270        let right = clamp(
271            right,
272            <i64 as From<_>>::from(left) + 1,
273            <i64 as From<_>>::from(width),
274        ) as u32;
275
276        // Go back to left boundary of pixel, to properly compare with i
277        // below, as the kernel treats the centre of a pixel as 0.
278        let inputx = inputx - 0.5;
279
280        ws.clear();
281        let mut sum = 0.0;
282        for i in left..right {
283            let w = (filter.kernel)((i as f32 - inputx) / sratio);
284            ws.push(w);
285            sum += w;
286        }
287        ws.iter_mut().for_each(|w| *w /= sum);
288
289        for y in 0..height {
290            let mut t = (0.0, 0.0, 0.0, 0.0);
291
292            for (i, w) in ws.iter().enumerate() {
293                let p = image.get_pixel(left + i as u32, y);
294
295                #[allow(deprecated)]
296                let vec = p.channels4();
297
298                t.0 += vec.0 * w;
299                t.1 += vec.1 * w;
300                t.2 += vec.2 * w;
301                t.3 += vec.3 * w;
302            }
303
304            #[allow(deprecated)]
305            let t = Pixel::from_channels(
306                NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
307                NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
308                NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
309                NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
310            );
311
312            out.put_pixel(outx, y, t);
313        }
314    }
315
316    out
317}
318
319/// Linearly sample from an image using coordinates in [0, 1].
320pub fn sample_bilinear<P: Pixel>(
321    img: &impl GenericImageView<Pixel = P>,
322    u: f32,
323    v: f32,
324) -> Option<P> {
325    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
326        return None;
327    }
328
329    let (w, h) = img.dimensions();
330    if w == 0 || h == 0 {
331        return None;
332    }
333
334    let ui = w as f32 * u - 0.5;
335    let vi = h as f32 * v - 0.5;
336    interpolate_bilinear(
337        img,
338        ui.max(0.).min((w - 1) as f32),
339        vi.max(0.).min((h - 1) as f32),
340    )
341}
342
343/// Sample from an image using coordinates in [0, 1], taking the nearest coordinate.
344pub fn sample_nearest<P: Pixel>(
345    img: &impl GenericImageView<Pixel = P>,
346    u: f32,
347    v: f32,
348) -> Option<P> {
349    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
350        return None;
351    }
352
353    let (w, h) = img.dimensions();
354    let ui = w as f32 * u - 0.5;
355    let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);
356
357    let vi = h as f32 * v - 0.5;
358    let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
359    interpolate_nearest(img, ui, vi)
360}
361
362/// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the
363/// nearest pixel.
364///
365/// Coordinates outside the image bounds will return `None`, however the
366/// behavior for points within half a pixel of the image bounds may change in
367/// the future.
368pub fn interpolate_nearest<P: Pixel>(
369    img: &impl GenericImageView<Pixel = P>,
370    x: f32,
371    y: f32,
372) -> Option<P> {
373    let (w, h) = img.dimensions();
374    if w == 0 || h == 0 {
375        return None;
376    }
377    if !(0.0..=((w - 1) as f32)).contains(&x) {
378        return None;
379    }
380    if !(0.0..=((h - 1) as f32)).contains(&y) {
381        return None;
382    }
383
384    Some(img.get_pixel(x.round() as u32, y.round() as u32))
385}
386
387/// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1].
388pub fn interpolate_bilinear<P: Pixel>(
389    img: &impl GenericImageView<Pixel = P>,
390    x: f32,
391    y: f32,
392) -> Option<P> {
393    // assumption needed for correctness of pixel creation
394    assert!(P::CHANNEL_COUNT <= 4);
395
396    let (w, h) = img.dimensions();
397    if w == 0 || h == 0 {
398        return None;
399    }
400    if !(0.0..=((w - 1) as f32)).contains(&x) {
401        return None;
402    }
403    if !(0.0..=((h - 1) as f32)).contains(&y) {
404        return None;
405    }
406
407    // keep these as integers, for fewer FLOPs
408    let uf = x.floor() as u32;
409    let vf = y.floor() as u32;
410    let uc = (uf + 1).min(w - 1);
411    let vc = (vf + 1).min(h - 1);
412
413    // clamp coords to the range of the image
414    let mut sxx = [[0.; 4]; 4];
415
416    // do not use Array::map, as it can be slow with high stack usage,
417    // for [[f32; 4]; 4].
418
419    // convert samples to f32
420    // currently rgba is the largest one,
421    // so just store as many items as necessary,
422    // because there's not a simple way to be generic over all of them.
423    let mut compute = |u: u32, v: u32, i| {
424        let s = img.get_pixel(u, v);
425        for (j, c) in s.channels().iter().enumerate() {
426            sxx[j][i] = c.to_f32().unwrap();
427        }
428        s
429    };
430
431    // hacky reuse since cannot construct a generic Pixel
432    let mut out: P = compute(uf, vf, 0);
433    compute(uf, vc, 1);
434    compute(uc, vf, 2);
435    compute(uc, vc, 3);
436
437    // weights, the later two are independent from the first 2 for better vectorization.
438    let ufw = x - uf as f32;
439    let vfw = y - vf as f32;
440    let ucw = (uf + 1) as f32 - x;
441    let vcw = (vf + 1) as f32 - y;
442
443    // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean
444    // the distance between pixels is 1 so there is no denominator
445    let wff = ucw * vcw;
446    let wfc = ucw * vfw;
447    let wcf = ufw * vcw;
448    let wcc = ufw * vfw;
449    // was originally assert, but is actually not a cheap computation
450    debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);
451
452    // hack to see if primitive is an integer or a float
453    let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0;
454
455    for (i, c) in out.channels_mut().iter_mut().enumerate() {
456        let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3];
457        // this rounding may introduce quantization errors,
458        // Specifically what is meant is that many samples may deviate
459        // from the mean value of the originals, but it's not possible to fix that.
460        *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({
461            if v < 0.0 {
462                P::Subpixel::DEFAULT_MIN_VALUE
463            } else {
464                P::Subpixel::DEFAULT_MAX_VALUE
465            }
466        });
467    }
468
469    Some(out)
470}
471
472// Sample the columns of the supplied image using the provided filter.
473// The width of the image remains unchanged.
474// ```new_height``` is the desired height of the new image
475// ```filter``` is the filter to use for sampling.
476// The return value is not necessarily Rgba, the underlying order of channels in ```image``` is
477// preserved.
478//
479// Note: if an empty image is passed in, panics unless the image is truly empty.
480fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
481where
482    I: GenericImageView<Pixel = P>,
483    P: Pixel<Subpixel = S> + 'static,
484    S: Primitive + 'static,
485{
486    let (width, height) = image.dimensions();
487
488    // This is protection against a regression in memory usage such as #2340. Since the strategy to
489    // deal with it depends on the caller it is a precondition of this function.
490    assert!(
491        // Checks the implication: (height == 0) -> (width == 0)
492        height != 0 || width == 0,
493        "Unexpected prior allocation size. This case should have been handled by the caller"
494    );
495
496    let mut out = ImageBuffer::new(width, new_height);
497    let mut ws = Vec::new();
498
499    let ratio = height as f32 / new_height as f32;
500    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
501    let src_support = filter.support * sratio;
502
503    for outy in 0..new_height {
504        // For an explanation of this algorithm, see the comments
505        // in horizontal_sample.
506        let inputy = (outy as f32 + 0.5) * ratio;
507
508        let left = (inputy - src_support).floor() as i64;
509        let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
510
511        let right = (inputy + src_support).ceil() as i64;
512        let right = clamp(
513            right,
514            <i64 as From<_>>::from(left) + 1,
515            <i64 as From<_>>::from(height),
516        ) as u32;
517
518        let inputy = inputy - 0.5;
519
520        ws.clear();
521        let mut sum = 0.0;
522        for i in left..right {
523            let w = (filter.kernel)((i as f32 - inputy) / sratio);
524            ws.push(w);
525            sum += w;
526        }
527        ws.iter_mut().for_each(|w| *w /= sum);
528
529        for x in 0..width {
530            let mut t = (0.0, 0.0, 0.0, 0.0);
531
532            for (i, w) in ws.iter().enumerate() {
533                let p = image.get_pixel(x, left + i as u32);
534
535                #[allow(deprecated)]
536                let (k1, k2, k3, k4) = p.channels4();
537                let vec: (f32, f32, f32, f32) = (
538                    NumCast::from(k1).unwrap(),
539                    NumCast::from(k2).unwrap(),
540                    NumCast::from(k3).unwrap(),
541                    NumCast::from(k4).unwrap(),
542                );
543
544                t.0 += vec.0 * w;
545                t.1 += vec.1 * w;
546                t.2 += vec.2 * w;
547                t.3 += vec.3 * w;
548            }
549
550            #[allow(deprecated)]
551            // This is not necessarily Rgba.
552            let t = Pixel::from_channels(t.0, t.1, t.2, t.3);
553
554            out.put_pixel(x, outy, t);
555        }
556    }
557
558    out
559}
560
561/// Local struct for keeping track of pixel sums for fast thumbnail averaging
562struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
563
564impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
565    fn zeroed() -> Self {
566        ThumbnailSum(
567            S::Larger::zero(),
568            S::Larger::zero(),
569            S::Larger::zero(),
570            S::Larger::zero(),
571        )
572    }
573
574    fn sample_val(val: S) -> S::Larger {
575        <S::Larger as NumCast>::from(val).unwrap()
576    }
577
578    fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
579        #[allow(deprecated)]
580        let pixel = pixel.channels4();
581        self.0 += Self::sample_val(pixel.0);
582        self.1 += Self::sample_val(pixel.1);
583        self.2 += Self::sample_val(pixel.2);
584        self.3 += Self::sample_val(pixel.3);
585    }
586}
587
588/// Resize the supplied image to the specific dimensions.
589///
590/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
591/// to exactly one target pixel.  May give aliasing artifacts if new size is close to old size.
592///
593/// In case the current width is smaller than the new width or similar for the height, another
594/// strategy is used instead.  For each pixel in the output, a rectangular region of the input is
595/// determined, just as previously.  But when no input pixel is part of this region, the nearest
596/// pixels are interpolated instead.
597///
598/// For speed reasons, all interpolation is performed linearly over the colour values.  It will not
599/// take the pixel colour spaces into account.
600pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
601where
602    I: GenericImageView<Pixel = P>,
603    P: Pixel<Subpixel = S> + 'static,
604    S: Primitive + Enlargeable + 'static,
605{
606    let (width, height) = image.dimensions();
607    let mut out = ImageBuffer::new(new_width, new_height);
608    if height == 0 || width == 0 {
609        return out;
610    }
611
612    let x_ratio = width as f32 / new_width as f32;
613    let y_ratio = height as f32 / new_height as f32;
614
615    for outy in 0..new_height {
616        let bottomf = outy as f32 * y_ratio;
617        let topf = bottomf + y_ratio;
618
619        let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
620        let top = clamp(topf.ceil() as u32, bottom, height);
621
622        for outx in 0..new_width {
623            let leftf = outx as f32 * x_ratio;
624            let rightf = leftf + x_ratio;
625
626            let left = clamp(leftf.ceil() as u32, 0, width - 1);
627            let right = clamp(rightf.ceil() as u32, left, width);
628
629            let avg = if bottom != top && left != right {
630                thumbnail_sample_block(image, left, right, bottom, top)
631            } else if bottom != top {
632                // && left == right
633                // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
634                // assertion can never trigger.
635                debug_assert!(
636                    left > 0 && right > 0,
637                    "First output column must have corresponding pixels"
638                );
639
640                let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
641                thumbnail_sample_fraction_horizontal(
642                    image,
643                    right - 1,
644                    fraction_horizontal,
645                    bottom,
646                    top,
647                )
648            } else if left != right {
649                // && bottom == top
650                // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
651                // assertion can never trigger.
652                debug_assert!(
653                    bottom > 0 && top > 0,
654                    "First output row must have corresponding pixels"
655                );
656
657                let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
658                thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
659            } else {
660                // bottom == top && left == right
661                let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
662                let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;
663
664                thumbnail_sample_fraction_both(
665                    image,
666                    right - 1,
667                    fraction_horizontal,
668                    top - 1,
669                    fraction_vertical,
670                )
671            };
672
673            #[allow(deprecated)]
674            let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
675            out.put_pixel(outx, outy, pixel);
676        }
677    }
678
679    out
680}
681
682/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
683fn thumbnail_sample_block<I, P, S>(
684    image: &I,
685    left: u32,
686    right: u32,
687    bottom: u32,
688    top: u32,
689) -> (S, S, S, S)
690where
691    I: GenericImageView<Pixel = P>,
692    P: Pixel<Subpixel = S>,
693    S: Primitive + Enlargeable,
694{
695    let mut sum = ThumbnailSum::zeroed();
696
697    for y in bottom..top {
698        for x in left..right {
699            let k = image.get_pixel(x, y);
700            sum.add_pixel(k);
701        }
702    }
703
704    let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
705    let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
706    (
707        S::clamp_from((sum.0 + round) / n),
708        S::clamp_from((sum.1 + round) / n),
709        S::clamp_from((sum.2 + round) / n),
710        S::clamp_from((sum.3 + round) / n),
711    )
712}
713
714/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
715fn thumbnail_sample_fraction_horizontal<I, P, S>(
716    image: &I,
717    left: u32,
718    fraction_horizontal: f32,
719    bottom: u32,
720    top: u32,
721) -> (S, S, S, S)
722where
723    I: GenericImageView<Pixel = P>,
724    P: Pixel<Subpixel = S>,
725    S: Primitive + Enlargeable,
726{
727    let fract = fraction_horizontal;
728
729    let mut sum_left = ThumbnailSum::zeroed();
730    let mut sum_right = ThumbnailSum::zeroed();
731    for x in bottom..top {
732        let k_left = image.get_pixel(left, x);
733        sum_left.add_pixel(k_left);
734
735        let k_right = image.get_pixel(left + 1, x);
736        sum_right.add_pixel(k_right);
737    }
738
739    // Now we approximate: left/n*(1-fract) + right/n*fract
740    let fact_right = fract / ((top - bottom) as f32);
741    let fact_left = (1. - fract) / ((top - bottom) as f32);
742
743    let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
744        <S as NumCast>::from(
745            fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
746        )
747        .expect("Average sample value should fit into sample type")
748    };
749
750    (
751        mix_left_and_right(sum_left.0, sum_right.0),
752        mix_left_and_right(sum_left.1, sum_right.1),
753        mix_left_and_right(sum_left.2, sum_right.2),
754        mix_left_and_right(sum_left.3, sum_right.3),
755    )
756}
757
758/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
759fn thumbnail_sample_fraction_vertical<I, P, S>(
760    image: &I,
761    left: u32,
762    right: u32,
763    bottom: u32,
764    fraction_vertical: f32,
765) -> (S, S, S, S)
766where
767    I: GenericImageView<Pixel = P>,
768    P: Pixel<Subpixel = S>,
769    S: Primitive + Enlargeable,
770{
771    let fract = fraction_vertical;
772
773    let mut sum_bot = ThumbnailSum::zeroed();
774    let mut sum_top = ThumbnailSum::zeroed();
775    for x in left..right {
776        let k_bot = image.get_pixel(x, bottom);
777        sum_bot.add_pixel(k_bot);
778
779        let k_top = image.get_pixel(x, bottom + 1);
780        sum_top.add_pixel(k_top);
781    }
782
783    // Now we approximate: bot/n*fract + top/n*(1-fract)
784    let fact_top = fract / ((right - left) as f32);
785    let fact_bot = (1. - fract) / ((right - left) as f32);
786
787    let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
788        <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
789            .expect("Average sample value should fit into sample type")
790    };
791
792    (
793        mix_bot_and_top(sum_bot.0, sum_top.0),
794        mix_bot_and_top(sum_bot.1, sum_top.1),
795        mix_bot_and_top(sum_bot.2, sum_top.2),
796        mix_bot_and_top(sum_bot.3, sum_top.3),
797    )
798}
799
800/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
801fn thumbnail_sample_fraction_both<I, P, S>(
802    image: &I,
803    left: u32,
804    fraction_vertical: f32,
805    bottom: u32,
806    fraction_horizontal: f32,
807) -> (S, S, S, S)
808where
809    I: GenericImageView<Pixel = P>,
810    P: Pixel<Subpixel = S>,
811    S: Primitive + Enlargeable,
812{
813    #[allow(deprecated)]
814    let k_bl = image.get_pixel(left, bottom).channels4();
815    #[allow(deprecated)]
816    let k_tl = image.get_pixel(left, bottom + 1).channels4();
817    #[allow(deprecated)]
818    let k_br = image.get_pixel(left + 1, bottom).channels4();
819    #[allow(deprecated)]
820    let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
821
822    let frac_v = fraction_vertical;
823    let frac_h = fraction_horizontal;
824
825    let fact_tr = frac_v * frac_h;
826    let fact_tl = frac_v * (1. - frac_h);
827    let fact_br = (1. - frac_v) * frac_h;
828    let fact_bl = (1. - frac_v) * (1. - frac_h);
829
830    let mix = |br: S, tr: S, bl: S, tl: S| {
831        <S as NumCast>::from(
832            fact_br * br.to_f32().unwrap()
833                + fact_tr * tr.to_f32().unwrap()
834                + fact_bl * bl.to_f32().unwrap()
835                + fact_tl * tl.to_f32().unwrap(),
836        )
837        .expect("Average sample value should fit into sample type")
838    };
839
840    (
841        mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
842        mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
843        mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
844        mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
845    )
846}
847
848/// Perform a 3x3 box filter on the supplied image.
849/// ```kernel``` is an array of the filter weights of length 9.
850pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
851where
852    I: GenericImageView<Pixel = P>,
853    P: Pixel<Subpixel = S> + 'static,
854    S: Primitive + 'static,
855{
856    // The kernel's input positions relative to the current pixel.
857    let taps: &[(isize, isize)] = &[
858        (-1, -1),
859        (0, -1),
860        (1, -1),
861        (-1, 0),
862        (0, 0),
863        (1, 0),
864        (-1, 1),
865        (0, 1),
866        (1, 1),
867    ];
868
869    let (width, height) = image.dimensions();
870
871    let mut out = ImageBuffer::new(width, height);
872
873    let max = S::DEFAULT_MAX_VALUE;
874    let max: f32 = NumCast::from(max).unwrap();
875
876    #[allow(clippy::redundant_guards)]
877    let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
878        x if x == 0.0 => 1.0,
879        sum => sum,
880    };
881    let sum = (sum, sum, sum, sum);
882
883    for y in 1..height - 1 {
884        for x in 1..width - 1 {
885            let mut t = (0.0, 0.0, 0.0, 0.0);
886
887            // TODO: There is no need to recalculate the kernel for each pixel.
888            // Only a subtract and addition is needed for pixels after the first
889            // in each row.
890            for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
891                let k = (k, k, k, k);
892                let x0 = x as isize + a;
893                let y0 = y as isize + b;
894
895                let p = image.get_pixel(x0 as u32, y0 as u32);
896
897                #[allow(deprecated)]
898                let (k1, k2, k3, k4) = p.channels4();
899
900                let vec: (f32, f32, f32, f32) = (
901                    NumCast::from(k1).unwrap(),
902                    NumCast::from(k2).unwrap(),
903                    NumCast::from(k3).unwrap(),
904                    NumCast::from(k4).unwrap(),
905                );
906
907                t.0 += vec.0 * k.0;
908                t.1 += vec.1 * k.1;
909                t.2 += vec.2 * k.2;
910                t.3 += vec.3 * k.3;
911            }
912
913            let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
914
915            #[allow(deprecated)]
916            let t = Pixel::from_channels(
917                NumCast::from(clamp(t1, 0.0, max)).unwrap(),
918                NumCast::from(clamp(t2, 0.0, max)).unwrap(),
919                NumCast::from(clamp(t3, 0.0, max)).unwrap(),
920                NumCast::from(clamp(t4, 0.0, max)).unwrap(),
921            );
922
923            out.put_pixel(x, y, t);
924        }
925    }
926
927    out
928}
929
930/// Resize the supplied image to the specified dimensions.
931/// ```nwidth``` and ```nheight``` are the new dimensions.
932/// ```filter``` is the sampling filter to use.
933/// This method assumes alpha pre-multiplication for images that contain non-constant alpha.
934pub fn resize<I: GenericImageView>(
935    image: &I,
936    nwidth: u32,
937    nheight: u32,
938    filter: FilterType,
939) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
940where
941    I::Pixel: 'static,
942    <I::Pixel as Pixel>::Subpixel: 'static,
943{
944    // Check if there is nothing to sample from.
945    let is_empty = {
946        let (width, height) = image.dimensions();
947        width == 0 || height == 0
948    };
949
950    if is_empty {
951        return ImageBuffer::new(nwidth, nheight);
952    }
953
954    // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling
955    if (nwidth, nheight) == image.dimensions() {
956        let mut tmp = ImageBuffer::new(image.width(), image.height());
957        tmp.copy_from(image, 0, 0).unwrap();
958        return tmp;
959    }
960
961    let mut method = match filter {
962        FilterType::Nearest => Filter {
963            kernel: Box::new(box_kernel),
964            support: 0.0,
965        },
966        FilterType::Triangle => Filter {
967            kernel: Box::new(triangle_kernel),
968            support: 1.0,
969        },
970        FilterType::CatmullRom => Filter {
971            kernel: Box::new(catmullrom_kernel),
972            support: 2.0,
973        },
974        FilterType::Gaussian => Filter {
975            kernel: Box::new(gaussian_kernel),
976            support: 3.0,
977        },
978        FilterType::Lanczos3 => Filter {
979            kernel: Box::new(lanczos3_kernel),
980            support: 3.0,
981        },
982    };
983
984    // Note: tmp is not necessarily actually Rgba
985    let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
986    horizontal_sample(&tmp, nwidth, &mut method)
987}
988
989/// Performs a Gaussian blur on the supplied image.
990/// ```sigma``` is a measure of how much to blur by.
991/// Use [`crate::imageops::fast_blur()`] for a faster but less
992/// accurate version.
993/// This method assumes alpha pre-multiplication for images that contain non-constant alpha.
994pub fn blur<I: GenericImageView>(
995    image: &I,
996    sigma: f32,
997) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
998where
999    I::Pixel: 'static,
1000{
1001    let sigma = if sigma <= 0.0 { 1.0 } else { sigma };
1002
1003    let mut method = Filter {
1004        kernel: Box::new(|x| gaussian(x, sigma)),
1005        support: 2.0 * sigma,
1006    };
1007
1008    let (width, height) = image.dimensions();
1009    let is_empty = width == 0 || height == 0;
1010
1011    if is_empty {
1012        return ImageBuffer::new(width, height);
1013    }
1014
1015    // Keep width and height the same for horizontal and
1016    // vertical sampling.
1017    // Note: tmp is not necessarily actually Rgba
1018    let tmp: Rgba32FImage = vertical_sample(image, height, &mut method);
1019    horizontal_sample(&tmp, width, &mut method)
1020}
1021
1022/// Performs an unsharpen mask on the supplied image.
1023/// ```sigma``` is the amount to blur the image by.
1024/// ```threshold``` is the threshold for minimal brightness change that will be sharpened.
1025///
1026/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
1027pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
1028where
1029    I: GenericImageView<Pixel = P>,
1030    P: Pixel<Subpixel = S> + 'static,
1031    S: Primitive + 'static,
1032{
1033    let mut tmp = blur(image, sigma);
1034
1035    let max = S::DEFAULT_MAX_VALUE;
1036    let max: i32 = NumCast::from(max).unwrap();
1037    let (width, height) = image.dimensions();
1038
1039    for y in 0..height {
1040        for x in 0..width {
1041            let a = image.get_pixel(x, y);
1042            let b = tmp.get_pixel_mut(x, y);
1043
1044            let p = a.map2(b, |c, d| {
1045                let ic: i32 = NumCast::from(c).unwrap();
1046                let id: i32 = NumCast::from(d).unwrap();
1047
1048                let diff = ic - id;
1049
1050                if diff.abs() > threshold {
1051                    let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers??
1052
1053                    NumCast::from(e).unwrap()
1054                } else {
1055                    c
1056                }
1057            });
1058
1059            *b = p;
1060        }
1061    }
1062
1063    tmp
1064}
1065
1066#[cfg(test)]
1067mod tests {
1068    use super::{resize, sample_bilinear, sample_nearest, FilterType};
1069    use crate::{GenericImageView, ImageBuffer, RgbImage};
1070    #[cfg(feature = "benchmarks")]
1071    use test;
1072
1073    #[bench]
1074    #[cfg(all(feature = "benchmarks", feature = "png"))]
1075    fn bench_resize(b: &mut test::Bencher) {
1076        use std::path::Path;
1077        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1078        b.iter(|| {
1079            test::black_box(resize(&img, 200, 200, FilterType::Nearest));
1080        });
1081        b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
1082    }
1083
1084    #[test]
1085    #[cfg(feature = "png")]
1086    fn test_resize_same_size() {
1087        use std::path::Path;
1088        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1089        let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
1090        assert!(img.pixels().eq(resize.pixels()));
1091    }
1092
1093    #[test]
1094    #[cfg(feature = "png")]
1095    fn test_sample_bilinear() {
1096        use std::path::Path;
1097        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1098        assert!(sample_bilinear(&img, 0., 0.).is_some());
1099        assert!(sample_bilinear(&img, 1., 0.).is_some());
1100        assert!(sample_bilinear(&img, 0., 1.).is_some());
1101        assert!(sample_bilinear(&img, 1., 1.).is_some());
1102        assert!(sample_bilinear(&img, 0.5, 0.5).is_some());
1103
1104        assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
1105        assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
1106        assert!(sample_bilinear(&img, 1.2, 1.2).is_none());
1107
1108        assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
1109        assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
1110        assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
1111    }
1112    #[test]
1113    #[cfg(feature = "png")]
1114    fn test_sample_nearest() {
1115        use std::path::Path;
1116        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1117        assert!(sample_nearest(&img, 0., 0.).is_some());
1118        assert!(sample_nearest(&img, 1., 0.).is_some());
1119        assert!(sample_nearest(&img, 0., 1.).is_some());
1120        assert!(sample_nearest(&img, 1., 1.).is_some());
1121        assert!(sample_nearest(&img, 0.5, 0.5).is_some());
1122
1123        assert!(sample_nearest(&img, 1.2, 0.5).is_none());
1124        assert!(sample_nearest(&img, 0.5, 1.2).is_none());
1125        assert!(sample_nearest(&img, 1.2, 1.2).is_none());
1126
1127        assert!(sample_nearest(&img, -0.1, 0.2).is_none());
1128        assert!(sample_nearest(&img, 0.2, -0.1).is_none());
1129        assert!(sample_nearest(&img, -0.1, -0.1).is_none());
1130    }
1131    #[test]
1132    fn test_sample_bilinear_correctness() {
1133        use crate::Rgba;
1134        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1135            (0, 0) => Rgba([255, 0, 0, 0]),
1136            (0, 1) => Rgba([0, 255, 0, 0]),
1137            (1, 0) => Rgba([0, 0, 255, 0]),
1138            (1, 1) => Rgba([0, 0, 0, 255]),
1139            _ => panic!(),
1140        });
1141        assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
1142        assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1143        assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1144        assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1145        assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1146
1147        assert_eq!(
1148            sample_bilinear(&img, 0.5, 0.0),
1149            Some(Rgba([128, 0, 128, 0]))
1150        );
1151        assert_eq!(
1152            sample_bilinear(&img, 0.0, 0.5),
1153            Some(Rgba([128, 128, 0, 0]))
1154        );
1155        assert_eq!(
1156            sample_bilinear(&img, 0.5, 1.0),
1157            Some(Rgba([0, 128, 0, 128]))
1158        );
1159        assert_eq!(
1160            sample_bilinear(&img, 1.0, 0.5),
1161            Some(Rgba([0, 0, 128, 128]))
1162        );
1163    }
1164    #[bench]
1165    #[cfg(feature = "benchmarks")]
1166    fn bench_sample_bilinear(b: &mut test::Bencher) {
1167        use crate::Rgba;
1168        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1169            (0, 0) => Rgba([255, 0, 0, 0]),
1170            (0, 1) => Rgba([0, 255, 0, 0]),
1171            (1, 0) => Rgba([0, 0, 255, 0]),
1172            (1, 1) => Rgba([0, 0, 0, 255]),
1173            _ => panic!(),
1174        });
1175        b.iter(|| {
1176            sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5));
1177        });
1178    }
1179    #[test]
1180    fn test_sample_nearest_correctness() {
1181        use crate::Rgba;
1182        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1183            (0, 0) => Rgba([255, 0, 0, 0]),
1184            (0, 1) => Rgba([0, 255, 0, 0]),
1185            (1, 0) => Rgba([0, 0, 255, 0]),
1186            (1, 1) => Rgba([0, 0, 0, 255]),
1187            _ => panic!(),
1188        });
1189
1190        assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1191        assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1192        assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1193        assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1194
1195        assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
1196        assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
1197        assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
1198        assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
1199        assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
1200    }
1201
1202    #[bench]
1203    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1204    fn bench_resize_same_size(b: &mut test::Bencher) {
1205        let path = concat!(
1206            env!("CARGO_MANIFEST_DIR"),
1207            "/tests/images/tiff/testsuite/mandrill.tiff"
1208        );
1209        let image = crate::open(path).unwrap();
1210        b.iter(|| {
1211            test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
1212        });
1213        b.bytes = (image.width() * image.height() * 3) as u64;
1214    }
1215
1216    #[test]
1217    fn test_issue_186() {
1218        let img: RgbImage = ImageBuffer::new(100, 100);
1219        let _ = resize(&img, 50, 50, FilterType::Lanczos3);
1220    }
1221
1222    #[bench]
1223    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1224    fn bench_thumbnail(b: &mut test::Bencher) {
1225        let path = concat!(
1226            env!("CARGO_MANIFEST_DIR"),
1227            "/tests/images/tiff/testsuite/mandrill.tiff"
1228        );
1229        let image = crate::open(path).unwrap();
1230        b.iter(|| {
1231            test::black_box(image.thumbnail(256, 256));
1232        });
1233        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1234    }
1235
1236    #[bench]
1237    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1238    fn bench_thumbnail_upsize(b: &mut test::Bencher) {
1239        let path = concat!(
1240            env!("CARGO_MANIFEST_DIR"),
1241            "/tests/images/tiff/testsuite/mandrill.tiff"
1242        );
1243        let image = crate::open(path).unwrap().thumbnail(256, 256);
1244        b.iter(|| {
1245            test::black_box(image.thumbnail(512, 512));
1246        });
1247        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1248    }
1249
1250    #[bench]
1251    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1252    fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
1253        let path = concat!(
1254            env!("CARGO_MANIFEST_DIR"),
1255            "/tests/images/tiff/testsuite/mandrill.tiff"
1256        );
1257        let image = crate::open(path).unwrap().thumbnail(193, 193);
1258        b.iter(|| {
1259            test::black_box(image.thumbnail(256, 256));
1260        });
1261        b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
1262    }
1263
1264    #[test]
1265    #[cfg(feature = "png")]
1266    fn resize_transparent_image() {
1267        use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
1268        use crate::imageops::crop_imm;
1269        use crate::RgbaImage;
1270
1271        fn assert_resize(image: &RgbaImage, filter: FilterType) {
1272            let resized = resize(image, 16, 16, filter);
1273            let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
1274            for pixel in cropped.pixels() {
1275                let alpha = pixel.0[3];
1276                assert!(
1277                    alpha != 254 && alpha != 253,
1278                    "alpha value: {}, {:?}",
1279                    alpha,
1280                    filter
1281                );
1282            }
1283        }
1284
1285        let path = concat!(
1286            env!("CARGO_MANIFEST_DIR"),
1287            "/tests/images/png/transparency/tp1n3p08.png"
1288        );
1289        let img = crate::open(path).unwrap();
1290        let rgba8 = img.as_rgba8().unwrap();
1291        let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
1292        for filter in filters {
1293            assert_resize(rgba8, *filter);
1294        }
1295    }
1296
1297    #[test]
1298    fn bug_1600() {
1299        let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
1300        let result = resize(&image, 22, 22, FilterType::Lanczos3);
1301        assert!(result.into_raw().into_iter().any(|c| c != 0));
1302    }
1303
1304    #[test]
1305    fn issue_2340() {
1306        let empty = crate::GrayImage::from_raw(1 << 31, 0, vec![]).unwrap();
1307        // Really we're checking that no overflow / outsized allocation happens here.
1308        let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1309        assert!(result.into_raw().into_iter().all(|c| c == 0));
1310        // With the previous strategy before the regression this would allocate 1TB of memory for a
1311        // temporary during the sampling evaluation.
1312        let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1313        assert!(result.into_raw().into_iter().all(|c| c == 0));
1314    }
1315
1316    #[test]
1317    fn issue_2340_refl() {
1318        // Tests the swapped coordinate version of `issue_2340`.
1319        let empty = crate::GrayImage::from_raw(0, 1 << 31, vec![]).unwrap();
1320        let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1321        assert!(result.into_raw().into_iter().all(|c| c == 0));
1322        let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1323        assert!(result.into_raw().into_iter().all(|c| c == 0));
1324    }
1325}