zune_jpeg/misc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/*
* Copyright (c) 2023.
*
* This software is free software;
*
* You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
*/
//!Miscellaneous stuff
#![allow(dead_code)]
use alloc::format;
use core::cmp::max;
use core::fmt;
use zune_core::bytestream::{ZByteReader, ZReaderTrait};
use zune_core::colorspace::ColorSpace;
use zune_core::log::trace;
use crate::components::{ComponentID, SampleRatios};
use crate::errors::DecodeErrors;
use crate::huffman::HuffmanTable;
use crate::JpegDecoder;
/// Start of baseline DCT Huffman coding
pub const START_OF_FRAME_BASE: u16 = 0xffc0;
/// Start of another frame
pub const START_OF_FRAME_EXT_SEQ: u16 = 0xffc1;
/// Start of progressive DCT encoding
pub const START_OF_FRAME_PROG_DCT: u16 = 0xffc2;
/// Start of Lossless sequential Huffman coding
pub const START_OF_FRAME_LOS_SEQ: u16 = 0xffc3;
/// Start of extended sequential DCT arithmetic coding
pub const START_OF_FRAME_EXT_AR: u16 = 0xffc9;
/// Start of Progressive DCT arithmetic coding
pub const START_OF_FRAME_PROG_DCT_AR: u16 = 0xffca;
/// Start of Lossless sequential Arithmetic coding
pub const START_OF_FRAME_LOS_SEQ_AR: u16 = 0xffcb;
/// Undo run length encoding of coefficients by placing them in natural order
#[rustfmt::skip]
pub const UN_ZIGZAG: [usize; 64 + 16] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
// Prevent overflowing
63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63
];
/// Align data to a 16 byte boundary
#[repr(align(16))]
#[derive(Clone)]
pub struct Aligned16<T: ?Sized>(pub T);
impl<T> Default for Aligned16<T>
where
T: Default
{
fn default() -> Self {
Aligned16(T::default())
}
}
/// Align data to a 32 byte boundary
#[repr(align(32))]
#[derive(Clone)]
pub struct Aligned32<T: ?Sized>(pub T);
impl<T> Default for Aligned32<T>
where
T: Default
{
fn default() -> Self {
Aligned32(T::default())
}
}
/// Markers that identify different Start of Image markers
/// They identify the type of encoding and whether the file use lossy(DCT) or
/// lossless compression and whether we use Huffman or arithmetic coding schemes
#[derive(Eq, PartialEq, Copy, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub enum SOFMarkers {
/// Baseline DCT markers
BaselineDct,
/// SOF_1 Extended sequential DCT,Huffman coding
ExtendedSequentialHuffman,
/// Progressive DCT, Huffman coding
ProgressiveDctHuffman,
/// Lossless (sequential), huffman coding,
LosslessHuffman,
/// Extended sequential DEC, arithmetic coding
ExtendedSequentialDctArithmetic,
/// Progressive DCT, arithmetic coding,
ProgressiveDctArithmetic,
/// Lossless ( sequential), arithmetic coding
LosslessArithmetic
}
impl Default for SOFMarkers {
fn default() -> Self {
Self::BaselineDct
}
}
impl SOFMarkers {
/// Check if a certain marker is sequential DCT or not
pub fn is_sequential_dct(self) -> bool {
matches!(
self,
Self::BaselineDct
| Self::ExtendedSequentialHuffman
| Self::ExtendedSequentialDctArithmetic
)
}
/// Check if a marker is a Lossles type or not
pub fn is_lossless(self) -> bool {
matches!(self, Self::LosslessHuffman | Self::LosslessArithmetic)
}
/// Check whether a marker is a progressive marker or not
pub fn is_progressive(self) -> bool {
matches!(
self,
Self::ProgressiveDctHuffman | Self::ProgressiveDctArithmetic
)
}
/// Create a marker from an integer
pub fn from_int(int: u16) -> Option<SOFMarkers> {
match int {
START_OF_FRAME_BASE => Some(Self::BaselineDct),
START_OF_FRAME_PROG_DCT => Some(Self::ProgressiveDctHuffman),
START_OF_FRAME_PROG_DCT_AR => Some(Self::ProgressiveDctArithmetic),
START_OF_FRAME_LOS_SEQ => Some(Self::LosslessHuffman),
START_OF_FRAME_LOS_SEQ_AR => Some(Self::LosslessArithmetic),
START_OF_FRAME_EXT_SEQ => Some(Self::ExtendedSequentialHuffman),
START_OF_FRAME_EXT_AR => Some(Self::ExtendedSequentialDctArithmetic),
_ => None
}
}
}
impl fmt::Debug for SOFMarkers {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match &self {
Self::BaselineDct => write!(f, "Baseline DCT"),
Self::ExtendedSequentialHuffman => {
write!(f, "Extended sequential DCT, Huffman Coding")
}
Self::ProgressiveDctHuffman => write!(f, "Progressive DCT,Huffman Encoding"),
Self::LosslessHuffman => write!(f, "Lossless (sequential) Huffman encoding"),
Self::ExtendedSequentialDctArithmetic => {
write!(f, "Extended sequential DCT, arithmetic coding")
}
Self::ProgressiveDctArithmetic => write!(f, "Progressive DCT, arithmetic coding"),
Self::LosslessArithmetic => write!(f, "Lossless (sequential) arithmetic coding")
}
}
}
/// Read `buf.len()*2` data from the underlying `u8` buffer and convert it into
/// u16, and store it into `buf`
///
/// # Arguments
/// - reader: A mutable reference to the underlying reader.
/// - buf: A mutable reference to a slice containing u16's
#[inline]
pub fn read_u16_into<T>(reader: &mut ZByteReader<T>, buf: &mut [u16]) -> Result<(), DecodeErrors>
where
T: ZReaderTrait
{
for i in buf {
*i = reader.get_u16_be_err()?;
}
Ok(())
}
/// Set up component parameters.
///
/// This modifies the components in place setting up details needed by other
/// parts fo the decoder.
pub(crate) fn setup_component_params<T: ZReaderTrait>(
img: &mut JpegDecoder<T>
) -> Result<(), DecodeErrors> {
let img_width = img.width();
let img_height = img.height();
// in case of adobe app14 being present, zero may indicate
// either CMYK if components are 4 or RGB if components are 3,
// see https://docs.oracle.com/javase/6/docs/api/javax/imageio/metadata/doc-files/jpeg_metadata.html
// so since we may not know how many number of components
// we have when decoding app14, we have to defer that check
// until now.
//
// We know adobe app14 was present since it's the only one that can modify
// input colorspace to be CMYK
if img.components.len() == 3 && img.input_colorspace == ColorSpace::CMYK {
img.input_colorspace = ColorSpace::RGB;
}
for component in &mut img.components {
// compute interleaved image info
// h_max contains the maximum horizontal component
img.h_max = max(img.h_max, component.horizontal_sample);
// v_max contains the maximum vertical component
img.v_max = max(img.v_max, component.vertical_sample);
img.mcu_width = img.h_max * 8;
img.mcu_height = img.v_max * 8;
// Number of MCU's per width
img.mcu_x = (usize::from(img.info.width) + img.mcu_width - 1) / img.mcu_width;
// Number of MCU's per height
img.mcu_y = (usize::from(img.info.height) + img.mcu_height - 1) / img.mcu_height;
if img.h_max != 1 || img.v_max != 1 {
// interleaved images have horizontal and vertical sampling factors
// not equal to 1.
img.is_interleaved = true;
}
// Extract quantization tables from the arrays into components
let qt_table = *img.qt_tables[component.quantization_table_number as usize]
.as_ref()
.ok_or_else(|| {
DecodeErrors::DqtError(format!(
"No quantization table for component {:?}",
component.component_id
))
})?;
let x = (usize::from(img_width) * component.horizontal_sample + img.h_max - 1) / img.h_max;
let y = (usize::from(img_height) * component.horizontal_sample + img.h_max - 1) / img.v_max;
component.x = x;
component.w2 = img.mcu_x * component.horizontal_sample * 8;
// probably not needed. :)
component.y = y;
component.quantization_table = qt_table;
// initially stride contains its horizontal sub-sampling
component.width_stride *= img.mcu_x * 8;
}
{
// Sampling factors are one thing that suck
// this fixes a specific problem with images like
//
// (2 2) None
// (2 1) H
// (2 1) H
//
// The images exist in the wild, the images are not meant to exist
// but they do, it's just an annoying horizontal sub-sampling that
// I don't know why it exists.
// But it does
// So we try to cope with that.
// I am not sure of how to explain how to fix it, but it involved a debugger
// and to much coke(the legal one)
//
// If this wasn't present, self.upsample_dest would have the wrong length
let mut handle_that_annoying_bug = false;
if let Some(y_component) = img
.components
.iter()
.find(|c| c.component_id == ComponentID::Y)
{
if y_component.horizontal_sample == 2 || y_component.vertical_sample == 2 {
handle_that_annoying_bug = true;
}
}
if handle_that_annoying_bug {
for comp in &mut img.components {
if (comp.component_id != ComponentID::Y)
&& (comp.horizontal_sample != 1 || comp.vertical_sample != 1)
{
comp.fix_an_annoying_bug = 2;
}
}
}
}
if img.is_mjpeg {
fill_default_mjpeg_tables(
img.is_progressive,
&mut img.dc_huffman_tables,
&mut img.ac_huffman_tables
);
}
Ok(())
}
///Calculate number of fill bytes added to the end of a JPEG image
/// to fill the image
///
/// JPEG usually inserts padding bytes if the image width cannot be evenly divided into
/// 8 , 16 or 32 chunks depending on the sub sampling ratio. So given a sub-sampling ratio,
/// and the actual width, this calculates the padded bytes that were added to the image
///
/// # Params
/// -actual_width: Actual width of the image
/// -sub_sample: Sub sampling factor of the image
///
/// # Returns
/// The padded width, this is how long the width is for a particular image
pub fn calculate_padded_width(actual_width: usize, sub_sample: SampleRatios) -> usize {
match sub_sample {
SampleRatios::None | SampleRatios::V => {
// None+V sends one MCU row, so that's a simple calculation
((actual_width + 7) / 8) * 8
}
SampleRatios::H | SampleRatios::HV => {
// sends two rows, width can be expanded by up to 15 more bytes
((actual_width + 15) / 16) * 16
}
}
}
// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
// least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
// *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
// use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
// MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
// segment to them, or else the decoder won't have any idea how to decompress the data.
// The exact table necessary is given in the OpenDML spec.""
pub fn fill_default_mjpeg_tables(
is_progressive: bool, dc_huffman_tables: &mut [Option<HuffmanTable>],
ac_huffman_tables: &mut [Option<HuffmanTable>]
) {
// Section K.3.3
trace!("Filling with default mjpeg tables");
if dc_huffman_tables[0].is_none() {
// Table K.3
dc_huffman_tables[0] = Some(
HuffmanTable::new_unfilled(
&[
0x00, 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
],
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B
],
true,
is_progressive
)
.unwrap()
);
}
if dc_huffman_tables[1].is_none() {
// Table K.4
dc_huffman_tables[1] = Some(
HuffmanTable::new_unfilled(
&[
0x00, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00
],
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B
],
true,
is_progressive
)
.unwrap()
);
}
if ac_huffman_tables[0].is_none() {
// Table K.5
ac_huffman_tables[0] = Some(
HuffmanTable::new_unfilled(
&[
0x00, 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04,
0x00, 0x00, 0x01, 0x7D
],
&[
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13,
0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42,
0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A,
0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x34, 0x35,
0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A,
0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84,
0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3,
0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1,
0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4,
0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA
],
false,
is_progressive
)
.unwrap()
);
}
if ac_huffman_tables[1].is_none() {
// Table K.6
ac_huffman_tables[1] = Some(
HuffmanTable::new_unfilled(
&[
0x00, 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04,
0x00, 0x01, 0x02, 0x77
],
&[
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51,
0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1,
0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24,
0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, 0x27, 0x28, 0x29, 0x2A,
0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66,
0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82,
0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA,
0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
0xDA, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4,
0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA
],
false,
is_progressive
)
.unwrap()
);
}
}