zune_jpeg/
misc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 * Copyright (c) 2023.
 *
 * This software is free software;
 *
 * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
 */

//!Miscellaneous stuff
#![allow(dead_code)]

use alloc::format;
use core::cmp::max;
use core::fmt;

use zune_core::bytestream::{ZByteReader, ZReaderTrait};
use zune_core::colorspace::ColorSpace;
use zune_core::log::trace;

use crate::components::{ComponentID, SampleRatios};
use crate::errors::DecodeErrors;
use crate::huffman::HuffmanTable;
use crate::JpegDecoder;

/// Start of baseline DCT Huffman coding

pub const START_OF_FRAME_BASE: u16 = 0xffc0;

/// Start of another frame

pub const START_OF_FRAME_EXT_SEQ: u16 = 0xffc1;

/// Start of progressive DCT encoding

pub const START_OF_FRAME_PROG_DCT: u16 = 0xffc2;

/// Start of Lossless sequential Huffman coding

pub const START_OF_FRAME_LOS_SEQ: u16 = 0xffc3;

/// Start of extended sequential DCT arithmetic coding

pub const START_OF_FRAME_EXT_AR: u16 = 0xffc9;

/// Start of Progressive DCT arithmetic coding

pub const START_OF_FRAME_PROG_DCT_AR: u16 = 0xffca;

/// Start of Lossless sequential Arithmetic coding

pub const START_OF_FRAME_LOS_SEQ_AR: u16 = 0xffcb;

/// Undo run length encoding of coefficients by placing them in natural order
#[rustfmt::skip]
pub const UN_ZIGZAG: [usize; 64 + 16] = [
     0,  1,  8, 16,  9,  2,  3, 10,
    17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63,
    // Prevent overflowing
    63, 63, 63, 63, 63, 63, 63, 63,
    63, 63, 63, 63, 63, 63, 63, 63
];

/// Align data to a 16 byte boundary
#[repr(align(16))]
#[derive(Clone)]

pub struct Aligned16<T: ?Sized>(pub T);

impl<T> Default for Aligned16<T>
where
    T: Default
{
    fn default() -> Self {
        Aligned16(T::default())
    }
}

/// Align data to a 32 byte boundary
#[repr(align(32))]
#[derive(Clone)]
pub struct Aligned32<T: ?Sized>(pub T);

impl<T> Default for Aligned32<T>
where
    T: Default
{
    fn default() -> Self {
        Aligned32(T::default())
    }
}

/// Markers that identify different Start of Image markers
/// They identify the type of encoding and whether the file use lossy(DCT) or
/// lossless compression and whether we use Huffman or arithmetic coding schemes
#[derive(Eq, PartialEq, Copy, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub enum SOFMarkers {
    /// Baseline DCT markers
    BaselineDct,
    /// SOF_1 Extended sequential DCT,Huffman coding
    ExtendedSequentialHuffman,
    /// Progressive DCT, Huffman coding
    ProgressiveDctHuffman,
    /// Lossless (sequential), huffman coding,
    LosslessHuffman,
    /// Extended sequential DEC, arithmetic coding
    ExtendedSequentialDctArithmetic,
    /// Progressive DCT, arithmetic coding,
    ProgressiveDctArithmetic,
    /// Lossless ( sequential), arithmetic coding
    LosslessArithmetic
}

impl Default for SOFMarkers {
    fn default() -> Self {
        Self::BaselineDct
    }
}

impl SOFMarkers {
    /// Check if a certain marker is sequential DCT or not

    pub fn is_sequential_dct(self) -> bool {
        matches!(
            self,
            Self::BaselineDct
                | Self::ExtendedSequentialHuffman
                | Self::ExtendedSequentialDctArithmetic
        )
    }

    /// Check if a marker is a Lossles type or not

    pub fn is_lossless(self) -> bool {
        matches!(self, Self::LosslessHuffman | Self::LosslessArithmetic)
    }

    /// Check whether a marker is a progressive marker or not

    pub fn is_progressive(self) -> bool {
        matches!(
            self,
            Self::ProgressiveDctHuffman | Self::ProgressiveDctArithmetic
        )
    }

    /// Create a marker from an integer

    pub fn from_int(int: u16) -> Option<SOFMarkers> {
        match int {
            START_OF_FRAME_BASE => Some(Self::BaselineDct),
            START_OF_FRAME_PROG_DCT => Some(Self::ProgressiveDctHuffman),
            START_OF_FRAME_PROG_DCT_AR => Some(Self::ProgressiveDctArithmetic),
            START_OF_FRAME_LOS_SEQ => Some(Self::LosslessHuffman),
            START_OF_FRAME_LOS_SEQ_AR => Some(Self::LosslessArithmetic),
            START_OF_FRAME_EXT_SEQ => Some(Self::ExtendedSequentialHuffman),
            START_OF_FRAME_EXT_AR => Some(Self::ExtendedSequentialDctArithmetic),
            _ => None
        }
    }
}

impl fmt::Debug for SOFMarkers {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match &self {
            Self::BaselineDct => write!(f, "Baseline DCT"),
            Self::ExtendedSequentialHuffman => {
                write!(f, "Extended sequential DCT, Huffman Coding")
            }
            Self::ProgressiveDctHuffman => write!(f, "Progressive DCT,Huffman Encoding"),
            Self::LosslessHuffman => write!(f, "Lossless (sequential) Huffman encoding"),
            Self::ExtendedSequentialDctArithmetic => {
                write!(f, "Extended sequential DCT, arithmetic coding")
            }
            Self::ProgressiveDctArithmetic => write!(f, "Progressive DCT, arithmetic coding"),
            Self::LosslessArithmetic => write!(f, "Lossless (sequential) arithmetic coding")
        }
    }
}

/// Read `buf.len()*2` data from the underlying `u8` buffer and convert it into
/// u16, and store it into `buf`
///
/// # Arguments
/// - reader: A mutable reference to the underlying reader.
/// - buf: A mutable reference to a slice containing u16's
#[inline]
pub fn read_u16_into<T>(reader: &mut ZByteReader<T>, buf: &mut [u16]) -> Result<(), DecodeErrors>
where
    T: ZReaderTrait
{
    for i in buf {
        *i = reader.get_u16_be_err()?;
    }

    Ok(())
}

/// Set up component parameters.
///
/// This modifies the components in place setting up details needed by other
/// parts fo the decoder.
pub(crate) fn setup_component_params<T: ZReaderTrait>(
    img: &mut JpegDecoder<T>
) -> Result<(), DecodeErrors> {
    let img_width = img.width();
    let img_height = img.height();

    // in case of adobe app14 being present, zero may indicate
    // either CMYK if components are 4 or RGB if components are 3,
    // see https://docs.oracle.com/javase/6/docs/api/javax/imageio/metadata/doc-files/jpeg_metadata.html
    // so since we may not know how many number of components
    // we have when decoding app14, we have to defer that check
    // until now.
    //
    // We know adobe app14 was present since it's the only one that can modify
    // input colorspace to be CMYK
    if img.components.len() == 3 && img.input_colorspace == ColorSpace::CMYK {
        img.input_colorspace = ColorSpace::RGB;
    }

    for component in &mut img.components {
        // compute interleaved image info
        // h_max contains the maximum horizontal component
        img.h_max = max(img.h_max, component.horizontal_sample);
        // v_max contains the maximum vertical component
        img.v_max = max(img.v_max, component.vertical_sample);
        img.mcu_width = img.h_max * 8;
        img.mcu_height = img.v_max * 8;
        // Number of MCU's per width
        img.mcu_x = (usize::from(img.info.width) + img.mcu_width - 1) / img.mcu_width;
        // Number of MCU's per height
        img.mcu_y = (usize::from(img.info.height) + img.mcu_height - 1) / img.mcu_height;

        if img.h_max != 1 || img.v_max != 1 {
            // interleaved images have horizontal and vertical sampling factors
            // not equal to 1.
            img.is_interleaved = true;
        }
        // Extract quantization tables from the arrays into components
        let qt_table = *img.qt_tables[component.quantization_table_number as usize]
            .as_ref()
            .ok_or_else(|| {
                DecodeErrors::DqtError(format!(
                    "No quantization table for component {:?}",
                    component.component_id
                ))
            })?;

        let x = (usize::from(img_width) * component.horizontal_sample + img.h_max - 1) / img.h_max;
        let y = (usize::from(img_height) * component.horizontal_sample + img.h_max - 1) / img.v_max;
        component.x = x;
        component.w2 = img.mcu_x * component.horizontal_sample * 8;
        // probably not needed. :)
        component.y = y;
        component.quantization_table = qt_table;
        // initially stride contains its horizontal sub-sampling
        component.width_stride *= img.mcu_x * 8;
    }
    {
        // Sampling factors are one thing that suck
        // this fixes a specific problem with images like
        //
        // (2 2) None
        // (2 1) H
        // (2 1) H
        //
        // The images exist in the wild, the images are not meant to exist
        // but they do, it's just an annoying horizontal sub-sampling that
        // I don't know why it exists.
        // But it does
        // So we try to cope with that.
        // I am not sure of how to explain how to fix it, but it involved a debugger
        // and to much coke(the legal one)
        //
        // If this wasn't present, self.upsample_dest would have the wrong length
        let mut handle_that_annoying_bug = false;

        if let Some(y_component) = img
            .components
            .iter()
            .find(|c| c.component_id == ComponentID::Y)
        {
            if y_component.horizontal_sample == 2 || y_component.vertical_sample == 2 {
                handle_that_annoying_bug = true;
            }
        }
        if handle_that_annoying_bug {
            for comp in &mut img.components {
                if (comp.component_id != ComponentID::Y)
                    && (comp.horizontal_sample != 1 || comp.vertical_sample != 1)
                {
                    comp.fix_an_annoying_bug = 2;
                }
            }
        }
    }

    if img.is_mjpeg {
        fill_default_mjpeg_tables(
            img.is_progressive,
            &mut img.dc_huffman_tables,
            &mut img.ac_huffman_tables
        );
    }

    Ok(())
}

///Calculate number of fill bytes added to the end of a JPEG image
/// to fill the image
///
/// JPEG usually inserts padding bytes if the image width cannot be evenly divided into
/// 8 , 16 or 32 chunks depending on the sub sampling ratio. So given a sub-sampling ratio,
/// and the actual width, this calculates the padded bytes that were added to the image
///
///  # Params
/// -actual_width: Actual width of the image
/// -sub_sample: Sub sampling factor of the image
///
/// # Returns
/// The padded width, this is how long the width is for a particular image
pub fn calculate_padded_width(actual_width: usize, sub_sample: SampleRatios) -> usize {
    match sub_sample {
        SampleRatios::None | SampleRatios::V => {
            // None+V sends one MCU row, so that's a simple calculation
            ((actual_width + 7) / 8) * 8
        }
        SampleRatios::H | SampleRatios::HV => {
            // sends two rows, width can be expanded by up to 15 more bytes
            ((actual_width + 15) / 16) * 16
        }
    }
}

// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
//  least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
//  *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
//  use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
//  MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
//  segment to them, or else the decoder won't have any idea how to decompress the data.
//  The exact table necessary is given in the OpenDML spec.""
pub fn fill_default_mjpeg_tables(
    is_progressive: bool, dc_huffman_tables: &mut [Option<HuffmanTable>],
    ac_huffman_tables: &mut [Option<HuffmanTable>]
) {
    // Section K.3.3
    trace!("Filling with default mjpeg tables");

    if dc_huffman_tables[0].is_none() {
        // Table K.3
        dc_huffman_tables[0] = Some(
            HuffmanTable::new_unfilled(
                &[
                    0x00, 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00,
                    0x00, 0x00, 0x00, 0x00
                ],
                &[
                    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B
                ],
                true,
                is_progressive
            )
            .unwrap()
        );
    }
    if dc_huffman_tables[1].is_none() {
        // Table K.4
        dc_huffman_tables[1] = Some(
            HuffmanTable::new_unfilled(
                &[
                    0x00, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00,
                    0x00, 0x00, 0x00, 0x00
                ],
                &[
                    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B
                ],
                true,
                is_progressive
            )
            .unwrap()
        );
    }
    if ac_huffman_tables[0].is_none() {
        // Table K.5
        ac_huffman_tables[0] = Some(
            HuffmanTable::new_unfilled(
                &[
                    0x00, 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04,
                    0x00, 0x00, 0x01, 0x7D
                ],
                &[
                    0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13,
                    0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42,
                    0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A,
                    0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x34, 0x35,
                    0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A,
                    0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67,
                    0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84,
                    0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
                    0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3,
                    0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
                    0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1,
                    0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4,
                    0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA
                ],
                false,
                is_progressive
            )
            .unwrap()
        );
    }
    if ac_huffman_tables[1].is_none() {
        // Table K.6
        ac_huffman_tables[1] = Some(
            HuffmanTable::new_unfilled(
                &[
                    0x00, 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04,
                    0x00, 0x01, 0x02, 0x77
                ],
                &[
                    0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51,
                    0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1,
                    0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24,
                    0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, 0x27, 0x28, 0x29, 0x2A,
                    0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
                    0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66,
                    0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82,
                    0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96,
                    0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA,
                    0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
                    0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
                    0xDA, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4,
                    0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA
                ],
                false,
                is_progressive
            )
            .unwrap()
        );
    }
}