kurbo/
fit.rs

1// Copyright 2022 the Kurbo Authors
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3
4//! An implementation of cubic Bézier curve fitting based on a quartic
5//! solver making signed area and moment match the source curve.
6
7use core::ops::Range;
8
9use alloc::vec::Vec;
10
11use arrayvec::ArrayVec;
12
13use crate::{
14    common::{
15        factor_quartic_inner, solve_cubic, solve_itp_fallible, solve_quadratic,
16        GAUSS_LEGENDRE_COEFFS_16,
17    },
18    Affine, BezPath, CubicBez, Line, ParamCurve, ParamCurveArclen, ParamCurveNearest, Point, Vec2,
19};
20
21#[cfg(not(feature = "std"))]
22use crate::common::FloatFuncs;
23
24/// The source curve for curve fitting.
25///
26/// This trait is a general representation of curves to be used as input to a curve
27/// fitting process. It can represent source curves with cusps and corners, though
28/// if the corners are known in advance, it may be better to run curve fitting on
29/// subcurves bounded by the corners.
30///
31/// The trait primarily works by sampling the source curve and computing the position
32/// and derivative at each sample. Those derivatives are then used for multiple
33/// sub-tasks, including ensuring G1 continuity at subdivision points, computing the
34/// area and moment of the curve for curve fitting, and casting rays for evaluation
35/// of a distance metric to test accuracy.
36///
37/// A major motivation is computation of offset curves, which often have cusps, but
38/// the presence and location of those cusps is not generally known. It is also
39/// intended for conversion between curve types (for example, piecewise Euler spiral
40/// or NURBS), and distortion effects such as perspective transform.
41///
42/// Note general similarities to [`ParamCurve`] but also important differences.
43/// Instead of separate [`eval`] and evaluation of derivative, have a single
44/// [`sample_pt_deriv`] method which can be more efficient and also handles cusps more
45/// robustly. Also there is no method for subsegment, as that is not needed and
46/// would be annoying to implement.
47///
48/// [`ParamCurve`]: crate::ParamCurve
49/// [`eval`]: crate::ParamCurve::eval
50/// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
51pub trait ParamCurveFit {
52    /// Evaluate the curve and its tangent at parameter `t`.
53    ///
54    /// For a regular curve (one not containing a cusp or corner), the
55    /// derivative is a good choice for the tangent vector and the `sign`
56    /// parameter can be ignored. Otherwise, the `sign` parameter selects which
57    /// side of the discontinuity the tangent will be sampled from.
58    ///
59    /// Generally `t` is in the range [0..1].
60    fn sample_pt_tangent(&self, t: f64, sign: f64) -> CurveFitSample;
61
62    /// Evaluate the point and derivative at parameter `t`.
63    ///
64    /// In curves with cusps, the derivative can go to zero.
65    fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2);
66
67    /// Compute moment integrals.
68    ///
69    /// This method computes the integrals of y dx, x y dx, and y^2 dx over the
70    /// length of this curve. From these integrals it is fairly straightforward
71    /// to derive the moments needed for curve fitting.
72    ///
73    /// A default implementation is provided which does quadrature integration
74    /// with Green's theorem, in terms of samples evaluated with
75    /// [`sample_pt_deriv`].
76    ///
77    /// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
78    fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
79        let t0 = 0.5 * (range.start + range.end);
80        let dt = 0.5 * (range.end - range.start);
81        let (a, x, y) = GAUSS_LEGENDRE_COEFFS_16
82            .iter()
83            .map(|(wi, xi)| {
84                let t = t0 + xi * dt;
85                let (p, d) = self.sample_pt_deriv(t);
86                let a = wi * d.x * p.y;
87                let x = p.x * a;
88                let y = p.y * a;
89                (a, x, y)
90            })
91            .fold((0.0, 0.0, 0.0), |(a0, x0, y0), (a1, x1, y1)| {
92                (a0 + a1, x0 + x1, y0 + y1)
93            });
94        (a * dt, x * dt, y * dt)
95    }
96
97    /// Find a cusp or corner within the given range.
98    ///
99    /// If the range contains a corner or cusp, return it. If there is more
100    /// than one such discontinuity, any can be reported, as the function will
101    /// be called repeatedly after subdivision of the range.
102    ///
103    /// Do not report cusps at the endpoints of the range, as this may cause
104    /// potentially infinite subdivision. In particular, when a cusp is reported
105    /// and this method is called on a subdivided range bounded by the reported
106    /// cusp, then the subsequent call should not report a cusp there.
107    ///
108    /// The definition of what exactly constitutes a cusp is somewhat loose.
109    /// If a cusp is missed, then the curve fitting algorithm will attempt to
110    /// fit the curve with a smooth curve, which is generally not a disaster
111    /// will usually result in more subdivision. Conversely, it might be useful
112    /// to report near-cusps, specifically points of curvature maxima where the
113    /// curvature is large but still mathematically finite.
114    fn break_cusp(&self, range: Range<f64>) -> Option<f64>;
115}
116
117/// A sample point of a curve for fitting.
118pub struct CurveFitSample {
119    /// A point on the curve at the sample location.
120    pub p: Point,
121    /// A vector tangent to the curve at the sample location.
122    pub tangent: Vec2,
123}
124
125impl CurveFitSample {
126    /// Intersect a ray orthogonal to the tangent with the given cubic.
127    ///
128    /// Returns a vector of `t` values on the cubic.
129    fn intersect(&self, c: CubicBez) -> ArrayVec<f64, 3> {
130        let p1 = 3.0 * (c.p1 - c.p0);
131        let p2 = 3.0 * c.p2.to_vec2() - 6.0 * c.p1.to_vec2() + 3.0 * c.p0.to_vec2();
132        let p3 = (c.p3 - c.p0) - 3.0 * (c.p2 - c.p1);
133        let c0 = (c.p0 - self.p).dot(self.tangent);
134        let c1 = p1.dot(self.tangent);
135        let c2 = p2.dot(self.tangent);
136        let c3 = p3.dot(self.tangent);
137        solve_cubic(c0, c1, c2, c3)
138            .into_iter()
139            .filter(|t| (0.0..=1.0).contains(t))
140            .collect()
141    }
142}
143
144/// Generate a Bézier path that fits the source curve.
145///
146/// This function is still experimental and the signature might change; it's possible
147/// it might become a method on the [`ParamCurveFit`] trait.
148///
149/// This function recursively subdivides the curve in half by the parameter when the
150/// accuracy is not met. That gives a reasonably optimized result but not necessarily
151/// the minimum number of segments.
152///
153/// In general, the resulting Bézier path should have a Fréchet distance less than
154/// the provided `accuracy` parameter. However, this is not a rigorous guarantee, as
155/// the error metric is computed approximately.
156///
157/// This function is intended for use when the source curve is piecewise continuous,
158/// with the discontinuities reported by the cusp method. In applications (such as
159/// stroke expansion) where this property may not hold, it is up to the client to
160/// detect and handle such cases. Even so, best effort is made to avoid infinite
161/// subdivision.
162///
163/// When a higher degree of optimization is desired (at considerably more runtime cost),
164/// consider [`fit_to_bezpath_opt`] instead.
165pub fn fit_to_bezpath(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
166    let mut path = BezPath::new();
167    fit_to_bezpath_rec(source, 0.0..1.0, accuracy, &mut path);
168    path
169}
170
171// Discussion question: possibly should take endpoint samples, to avoid
172// duplication of that work.
173fn fit_to_bezpath_rec(
174    source: &impl ParamCurveFit,
175    range: Range<f64>,
176    accuracy: f64,
177    path: &mut BezPath,
178) {
179    let start = range.start;
180    let end = range.end;
181    let start_p = source.sample_pt_tangent(range.start, 1.0).p;
182    let end_p = source.sample_pt_tangent(range.end, -1.0).p;
183    if start_p.distance_squared(end_p) <= accuracy * accuracy {
184        if let Some((c, _)) = try_fit_line(source, accuracy, range, start_p, end_p) {
185            if path.is_empty() {
186                path.move_to(c.p0);
187            }
188            path.curve_to(c.p1, c.p2, c.p3);
189            return;
190        }
191    }
192    let t = if let Some(t) = source.break_cusp(start..end) {
193        t
194    } else if let Some((c, _)) = fit_to_cubic(source, start..end, accuracy) {
195        if path.is_empty() {
196            path.move_to(c.p0);
197        }
198        path.curve_to(c.p1, c.p2, c.p3);
199        return;
200    } else {
201        // A smarter approach is possible than midpoint subdivision, but would be
202        // a significant increase in complexity.
203        0.5 * (start + end)
204    };
205    if t == start || t == end {
206        // infinite recursion, just draw a line
207        let p1 = start_p.lerp(end_p, 1.0 / 3.0);
208        let p2 = end_p.lerp(start_p, 1.0 / 3.0);
209        if path.is_empty() {
210            path.move_to(start_p);
211        }
212        path.curve_to(p1, p2, end_p);
213        return;
214    }
215    fit_to_bezpath_rec(source, start..t, accuracy, path);
216    fit_to_bezpath_rec(source, t..end, accuracy, path);
217}
218
219const N_SAMPLE: usize = 20;
220
221/// An acceleration structure for estimating curve distance
222struct CurveDist {
223    samples: ArrayVec<CurveFitSample, N_SAMPLE>,
224    arcparams: ArrayVec<f64, N_SAMPLE>,
225    range: Range<f64>,
226    /// A "spicy" curve is one with potentially extreme curvature variation,
227    /// so use arc length measurement for better accuracy.
228    spicy: bool,
229}
230
231impl CurveDist {
232    fn from_curve(source: &impl ParamCurveFit, range: Range<f64>) -> Self {
233        let step = (range.end - range.start) * (1.0 / (N_SAMPLE + 1) as f64);
234        let mut last_tan = None;
235        let mut spicy = false;
236        const SPICY_THRESH: f64 = 0.2;
237        let mut samples = ArrayVec::new();
238        for i in 0..N_SAMPLE + 2 {
239            let sample = source.sample_pt_tangent(range.start + i as f64 * step, 1.0);
240            if let Some(last_tan) = last_tan {
241                let cross = sample.tangent.cross(last_tan);
242                let dot = sample.tangent.dot(last_tan);
243                if cross.abs() > SPICY_THRESH * dot.abs() {
244                    spicy = true;
245                }
246            }
247            last_tan = Some(sample.tangent);
248            if i > 0 && i < N_SAMPLE + 1 {
249                samples.push(sample);
250            }
251        }
252        CurveDist {
253            samples,
254            arcparams: ArrayVec::default(),
255            range,
256            spicy,
257        }
258    }
259
260    fn compute_arc_params(&mut self, source: &impl ParamCurveFit) {
261        const N_SUBSAMPLE: usize = 10;
262        let (start, end) = (self.range.start, self.range.end);
263        let dt = (end - start) * (1.0 / ((N_SAMPLE + 1) * N_SUBSAMPLE) as f64);
264        let mut arclen = 0.0;
265        for i in 0..N_SAMPLE + 1 {
266            for j in 0..N_SUBSAMPLE {
267                let t = start + dt * ((i * N_SUBSAMPLE + j) as f64 + 0.5);
268                let (_, deriv) = source.sample_pt_deriv(t);
269                arclen += deriv.hypot();
270            }
271            if i < N_SAMPLE {
272                self.arcparams.push(arclen);
273            }
274        }
275        let arclen_inv = arclen.recip();
276        for x in &mut self.arcparams {
277            *x *= arclen_inv;
278        }
279    }
280
281    /// Evaluate distance based on arc length parametrization
282    fn eval_arc(&self, c: CubicBez, acc2: f64) -> Option<f64> {
283        // TODO: this could perhaps be tuned.
284        const EPS: f64 = 1e-9;
285        let c_arclen = c.arclen(EPS);
286        let mut max_err2 = 0.0;
287        for (sample, s) in self.samples.iter().zip(&self.arcparams) {
288            let t = c.inv_arclen(c_arclen * s, EPS);
289            let err = sample.p.distance_squared(c.eval(t));
290            max_err2 = err.max(max_err2);
291            if max_err2 > acc2 {
292                return None;
293            }
294        }
295        Some(max_err2)
296    }
297
298    /// Evaluate distance to a cubic approximation.
299    ///
300    /// If distance exceeds stated accuracy, can return `None`. Note that
301    /// `acc2` is the square of the target.
302    ///
303    /// Returns the square of the error, which is intended to be a good
304    /// approximation of the Fréchet distance.
305    fn eval_ray(&self, c: CubicBez, acc2: f64) -> Option<f64> {
306        let mut max_err2 = 0.0;
307        for sample in &self.samples {
308            let mut best = acc2 + 1.0;
309            for t in sample.intersect(c) {
310                let err = sample.p.distance_squared(c.eval(t));
311                best = best.min(err);
312            }
313            max_err2 = best.max(max_err2);
314            if max_err2 > acc2 {
315                return None;
316            }
317        }
318        Some(max_err2)
319    }
320
321    fn eval_dist(&mut self, source: &impl ParamCurveFit, c: CubicBez, acc2: f64) -> Option<f64> {
322        // Always compute cheaper distance, hoping for early-out.
323        let ray_dist = self.eval_ray(c, acc2)?;
324        if !self.spicy {
325            return Some(ray_dist);
326        }
327        if self.arcparams.is_empty() {
328            self.compute_arc_params(source);
329        }
330        self.eval_arc(c, acc2)
331    }
332}
333
334/// As described in [Simplifying Bézier paths], strictly optimizing for
335/// Fréchet distance can create bumps. The problem is curves with long
336/// control arms (distance from the control point to the corresponding
337/// endpoint). We mitigate that by applying a penalty as a multiplier to
338/// the measured error (approximate Fréchet distance). This is ReLU-like,
339/// with a value of 1.0 below the elbow, and a given slope above it. The
340/// values here have been determined empirically to give good results.
341///
342/// [Simplifying Bézier paths]:
343/// https://raphlinus.github.io/curves/2023/04/18/bezpath-simplify.html
344const D_PENALTY_ELBOW: f64 = 0.65;
345const D_PENALTY_SLOPE: f64 = 2.0;
346
347/// Try fitting a line.
348///
349/// This is especially useful for very short chords, in which the standard
350/// cubic fit is not numerically stable. The tangents are not considered, so
351/// it's useful in cusp and near-cusp situations where the tangents are not
352/// reliable, as well.
353///
354/// Returns the line raised to a cubic and the error, if within tolerance.
355fn try_fit_line(
356    source: &impl ParamCurveFit,
357    accuracy: f64,
358    range: Range<f64>,
359    start: Point,
360    end: Point,
361) -> Option<(CubicBez, f64)> {
362    let acc2 = accuracy * accuracy;
363    let chord_l = Line::new(start, end);
364    const SHORT_N: usize = 7;
365    let mut max_err2 = 0.0;
366    let dt = (range.end - range.start) / (SHORT_N + 1) as f64;
367    for i in 0..SHORT_N {
368        let t = range.start + (i + 1) as f64 * dt;
369        let p = source.sample_pt_deriv(t).0;
370        let err2 = chord_l.nearest(p, accuracy).distance_sq;
371        if err2 > acc2 {
372            // Not in tolerance; likely subdivision will help.
373            return None;
374        }
375        max_err2 = err2.max(max_err2);
376    }
377    let p1 = start.lerp(end, 1.0 / 3.0);
378    let p2 = end.lerp(start, 1.0 / 3.0);
379    let c = CubicBez::new(start, p1, p2, end);
380    Some((c, max_err2))
381}
382
383/// Fit a single cubic to a range of the source curve.
384///
385/// Returns the cubic segment and the square of the error.
386/// Discussion question: should this be a method on the trait instead?
387pub fn fit_to_cubic(
388    source: &impl ParamCurveFit,
389    range: Range<f64>,
390    accuracy: f64,
391) -> Option<(CubicBez, f64)> {
392    let start = source.sample_pt_tangent(range.start, 1.0);
393    let end = source.sample_pt_tangent(range.end, -1.0);
394    let d = end.p - start.p;
395    let chord2 = d.hypot2();
396    let acc2 = accuracy * accuracy;
397    if chord2 <= acc2 {
398        // Special case very short chords; try to fit a line.
399        return try_fit_line(source, accuracy, range, start.p, end.p);
400    }
401    let th = d.atan2();
402    fn mod_2pi(th: f64) -> f64 {
403        let th_scaled = th * core::f64::consts::FRAC_1_PI * 0.5;
404        core::f64::consts::PI * 2.0 * (th_scaled - th_scaled.round())
405    }
406    let th0 = mod_2pi(start.tangent.atan2() - th);
407    let th1 = mod_2pi(th - end.tangent.atan2());
408
409    let (mut area, mut x, mut y) = source.moment_integrals(range.clone());
410    let (x0, y0) = (start.p.x, start.p.y);
411    let (dx, dy) = (d.x, d.y);
412    // Subtract off area of chord
413    area -= dx * (y0 + 0.5 * dy);
414    // `area` is signed area of closed curve segment.
415    // This quantity is invariant to translation and rotation.
416
417    // Subtract off moment of chord
418    let dy_3 = dy * (1. / 3.);
419    x -= dx * (x0 * y0 + 0.5 * (x0 * dy + y0 * dx) + dy_3 * dx);
420    y -= dx * (y0 * y0 + y0 * dy + dy_3 * dy);
421    // Translate start point to origin; convert raw integrals to moments.
422    x -= x0 * area;
423    y = 0.5 * y - y0 * area;
424    // Rotate into place (this also scales up by chordlength for efficiency).
425    let moment = d.x * x + d.y * y;
426    // `moment` is the chordlength times the x moment of the curve translated
427    // so its start point is on the origin, and rotated so its end point is on the
428    // x axis.
429
430    let chord2_inv = chord2.recip();
431    let unit_area = area * chord2_inv;
432    let mx = moment * chord2_inv.powi(2);
433    // `unit_area` is signed area scaled to unit chord; `mx` is scaled x moment
434
435    let chord = chord2.sqrt();
436    let aff = Affine::translate(start.p.to_vec2()) * Affine::rotate(th) * Affine::scale(chord);
437    let mut curve_dist = CurveDist::from_curve(source, range);
438    let mut best_c = None;
439    let mut best_err2 = None;
440    for (cand, d0, d1) in cubic_fit(th0, th1, unit_area, mx) {
441        let c = aff * cand;
442        if let Some(err2) = curve_dist.eval_dist(source, c, acc2) {
443            fn scale_f(d: f64) -> f64 {
444                1.0 + (d - D_PENALTY_ELBOW).max(0.0) * D_PENALTY_SLOPE
445            }
446            let scale = scale_f(d0).max(scale_f(d1)).powi(2);
447            let err2 = err2 * scale;
448            if err2 < acc2 && best_err2.map(|best| err2 < best).unwrap_or(true) {
449                best_c = Some(c);
450                best_err2 = Some(err2);
451            }
452        }
453    }
454    match (best_c, best_err2) {
455        (Some(c), Some(err2)) => Some((c, err2)),
456        _ => None,
457    }
458}
459
460/// Returns curves matching area and moment, given unit chord.
461fn cubic_fit(th0: f64, th1: f64, area: f64, mx: f64) -> ArrayVec<(CubicBez, f64, f64), 4> {
462    // Note: maybe we want to take unit vectors instead of angle? Shouldn't
463    // matter much either way though.
464    let (s0, c0) = th0.sin_cos();
465    let (s1, c1) = th1.sin_cos();
466    let a4 = -9.
467        * c0
468        * (((2. * s1 * c1 * c0 + s0 * (2. * c1 * c1 - 1.)) * c0 - 2. * s1 * c1) * c0
469            - c1 * c1 * s0);
470    let a3 = 12.
471        * ((((c1 * (30. * area * c1 - s1) - 15. * area) * c0 + 2. * s0
472            - c1 * s0 * (c1 + 30. * area * s1))
473            * c0
474            + c1 * (s1 - 15. * area * c1))
475            * c0
476            - s0 * c1 * c1);
477    let a2 = 12.
478        * ((((70. * mx + 15. * area) * s1 * s1 + c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area))
479            * c0
480            - 5. * s0 * s1 * (3. * s1 - 4. * c1 * (7. * mx + area)))
481            * c0
482            - c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area));
483    let a1 = 16.
484        * (((12. * s0 - 5. * c0 * (42. * mx - 17. * area)) * s1
485            - 70. * c1 * (3. * mx - area) * s0
486            - 75. * c0 * c1 * area * area)
487            * s1
488            - 75. * c1 * c1 * area * area * s0);
489    let a0 = 80. * s1 * (42. * s1 * mx - 25. * area * (s1 - c1 * area));
490    // TODO: "roots" is not a good name for this variable, as it also contains
491    // the real part of complex conjugate pairs.
492    let mut roots = ArrayVec::<f64, 4>::new();
493    const EPS: f64 = 1e-12;
494    if a4.abs() > EPS {
495        let a = a3 / a4;
496        let b = a2 / a4;
497        let c = a1 / a4;
498        let d = a0 / a4;
499        if let Some(quads) = factor_quartic_inner(a, b, c, d, false) {
500            for (qc1, qc0) in quads {
501                let qroots = solve_quadratic(qc0, qc1, 1.0);
502                if qroots.is_empty() {
503                    // Real part of pair of complex roots
504                    roots.push(-0.5 * qc1);
505                } else {
506                    roots.extend(qroots);
507                }
508            }
509        }
510    } else if a3.abs() > EPS {
511        roots.extend(solve_cubic(a0, a1, a2, a3));
512    } else if a2.abs() > EPS || a1.abs() > EPS || a0.abs() > EPS {
513        roots.extend(solve_quadratic(a0, a1, a2));
514    } else {
515        return [(
516            CubicBez::new((0.0, 0.0), (1. / 3., 0.0), (2. / 3., 0.0), (1., 0.0)),
517            1f64 / 3.,
518            1f64 / 3.,
519        )]
520        .into_iter()
521        .collect();
522    }
523
524    let s01 = s0 * c1 + s1 * c0;
525    roots
526        .iter()
527        .filter_map(|&d0| {
528            let (d0, d1) = if d0 > 0.0 {
529                let d1 = (d0 * s0 - area * (10. / 3.)) / (0.5 * d0 * s01 - s1);
530                if d1 > 0.0 {
531                    (d0, d1)
532                } else {
533                    (s1 / s01, 0.0)
534                }
535            } else {
536                (0.0, s0 / s01)
537            };
538            // We could implement a maximum d value here.
539            if d0 >= 0.0 && d1 >= 0.0 {
540                Some((
541                    CubicBez::new(
542                        (0.0, 0.0),
543                        (d0 * c0, d0 * s0),
544                        (1.0 - d1 * c1, d1 * s1),
545                        (1.0, 0.0),
546                    ),
547                    d0,
548                    d1,
549                ))
550            } else {
551                None
552            }
553        })
554        .collect()
555}
556
557/// Generate a highly optimized Bézier path that fits the source curve.
558///
559/// This function is still experimental and the signature might change; it's possible
560/// it might become a method on the [`ParamCurveFit`] trait.
561///
562/// This function is considerably slower than [`fit_to_bezpath`], as it computes
563/// optimal subdivision points. Its result is expected to be very close to the optimum
564/// possible Bézier path for the source curve, in that it has a minimal number of curve
565/// segments, and a minimal error over all paths with that number of segments.
566///
567/// See [`fit_to_bezpath`] for an explanation of the `accuracy` parameter.
568pub fn fit_to_bezpath_opt(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
569    let mut cusps = Vec::new();
570    let mut path = BezPath::new();
571    let mut t0 = 0.0;
572    loop {
573        let t1 = cusps.last().copied().unwrap_or(1.0);
574        match fit_to_bezpath_opt_inner(source, accuracy, t0..t1, &mut path) {
575            Some(t) => cusps.push(t),
576            None => match cusps.pop() {
577                Some(t) => t0 = t,
578                None => break,
579            },
580        }
581    }
582    path
583}
584
585/// Fit a range without cusps.
586///
587/// On Ok return, range has been added to the path. On Err return, report a cusp (and don't
588/// mutate path).
589fn fit_to_bezpath_opt_inner(
590    source: &impl ParamCurveFit,
591    accuracy: f64,
592    range: Range<f64>,
593    path: &mut BezPath,
594) -> Option<f64> {
595    if let Some(t) = source.break_cusp(range.clone()) {
596        return Some(t);
597    }
598    let err;
599    if let Some((c, err2)) = fit_to_cubic(source, range.clone(), accuracy) {
600        err = err2.sqrt();
601        if err < accuracy {
602            if range.start == 0.0 {
603                path.move_to(c.p0);
604            }
605            path.curve_to(c.p1, c.p2, c.p3);
606            return None;
607        }
608    } else {
609        err = 2.0 * accuracy;
610    }
611    let (mut t0, t1) = (range.start, range.end);
612    let mut n = 0;
613    let last_err;
614    loop {
615        n += 1;
616        match fit_opt_segment(source, accuracy, t0..t1) {
617            FitResult::ParamVal(t) => t0 = t,
618            FitResult::SegmentError(err) => {
619                last_err = err;
620                break;
621            }
622            FitResult::CuspFound(t) => return Some(t),
623        }
624    }
625    t0 = range.start;
626    const EPS: f64 = 1e-9;
627    let f = |x| fit_opt_err_delta(source, x, accuracy, t0..t1, n);
628    let k1 = 0.2 / accuracy;
629    let ya = -err;
630    let yb = accuracy - last_err;
631    let (_, x) = match solve_itp_fallible(f, 0.0, accuracy, EPS, 1, k1, ya, yb) {
632        Ok(x) => x,
633        Err(t) => return Some(t),
634    };
635    //println!("got fit with n={}, err={}", n, x);
636    let path_len = path.elements().len();
637    for i in 0..n {
638        let t1 = if i < n - 1 {
639            match fit_opt_segment(source, x, t0..range.end) {
640                FitResult::ParamVal(t1) => t1,
641                FitResult::SegmentError(_) => range.end,
642                FitResult::CuspFound(t) => {
643                    path.truncate(path_len);
644                    return Some(t);
645                }
646            }
647        } else {
648            range.end
649        };
650        let (c, _) = fit_to_cubic(source, t0..t1, accuracy).unwrap();
651        if i == 0 && range.start == 0.0 {
652            path.move_to(c.p0);
653        }
654        path.curve_to(c.p1, c.p2, c.p3);
655        t0 = t1;
656        if t0 == range.end {
657            // This is unlikely but could happen when not monotonic.
658            break;
659        }
660    }
661    None
662}
663
664fn measure_one_seg(source: &impl ParamCurveFit, range: Range<f64>, limit: f64) -> Option<f64> {
665    fit_to_cubic(source, range, limit).map(|(_, err2)| err2.sqrt())
666}
667
668enum FitResult {
669    /// The parameter (`t`) value that meets the desired accuracy.
670    ParamVal(f64),
671    /// Error of the measured segment.
672    SegmentError(f64),
673    /// The parameter value where a cusp was found.
674    CuspFound(f64),
675}
676
677fn fit_opt_segment(source: &impl ParamCurveFit, accuracy: f64, range: Range<f64>) -> FitResult {
678    if let Some(t) = source.break_cusp(range.clone()) {
679        return FitResult::CuspFound(t);
680    }
681    let missing_err = accuracy * 2.0;
682    let err = measure_one_seg(source, range.clone(), accuracy).unwrap_or(missing_err);
683    if err <= accuracy {
684        return FitResult::SegmentError(err);
685    }
686    let (t0, t1) = (range.start, range.end);
687    let f = |x| {
688        if let Some(t) = source.break_cusp(range.clone()) {
689            return Err(t);
690        }
691        let err = measure_one_seg(source, t0..x, accuracy).unwrap_or(missing_err);
692        Ok(err - accuracy)
693    };
694    const EPS: f64 = 1e-9;
695    let k1 = 2.0 / (t1 - t0);
696    match solve_itp_fallible(f, t0, t1, EPS, 1, k1, -accuracy, err - accuracy) {
697        Ok((t1, _)) => FitResult::ParamVal(t1),
698        Err(t) => FitResult::CuspFound(t),
699    }
700}
701
702// Ok result is delta error (accuracy - error of last seg).
703// Err result is a cusp.
704fn fit_opt_err_delta(
705    source: &impl ParamCurveFit,
706    accuracy: f64,
707    limit: f64,
708    range: Range<f64>,
709    n: usize,
710) -> Result<f64, f64> {
711    let (mut t0, t1) = (range.start, range.end);
712    for _ in 0..n - 1 {
713        t0 = match fit_opt_segment(source, accuracy, t0..t1) {
714            FitResult::ParamVal(t0) => t0,
715            // In this case, n - 1 will work, which of course means the error is highly
716            // non-monotonic. We should probably harvest that solution.
717            FitResult::SegmentError(_) => return Ok(accuracy),
718            FitResult::CuspFound(t) => return Err(t),
719        }
720    }
721    let err = measure_one_seg(source, t0..t1, limit).unwrap_or(accuracy * 2.0);
722    Ok(accuracy - err)
723}