kurbo/fit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
// Copyright 2022 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! An implementation of cubic Bézier curve fitting based on a quartic
//! solver making signed area and moment match the source curve.
use core::ops::Range;
use alloc::vec::Vec;
use arrayvec::ArrayVec;
use crate::{
common::{
factor_quartic_inner, solve_cubic, solve_itp_fallible, solve_quadratic,
GAUSS_LEGENDRE_COEFFS_16,
},
Affine, BezPath, CubicBez, Line, ParamCurve, ParamCurveArclen, ParamCurveNearest, Point, Vec2,
};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
/// The source curve for curve fitting.
///
/// This trait is a general representation of curves to be used as input to a curve
/// fitting process. It can represent source curves with cusps and corners, though
/// if the corners are known in advance, it may be better to run curve fitting on
/// subcurves bounded by the corners.
///
/// The trait primarily works by sampling the source curve and computing the position
/// and derivative at each sample. Those derivatives are then used for multiple
/// sub-tasks, including ensuring G1 continuity at subdivision points, computing the
/// area and moment of the curve for curve fitting, and casting rays for evaluation
/// of a distance metric to test accuracy.
///
/// A major motivation is computation of offset curves, which often have cusps, but
/// the presence and location of those cusps is not generally known. It is also
/// intended for conversion between curve types (for example, piecewise Euler spiral
/// or NURBS), and distortion effects such as perspective transform.
///
/// Note general similarities to [`ParamCurve`] but also important differences.
/// Instead of separate [`eval`] and evaluation of derivative, have a single
/// [`sample_pt_deriv`] method which can be more efficient and also handles cusps more
/// robustly. Also there is no method for subsegment, as that is not needed and
/// would be annoying to implement.
///
/// [`ParamCurve`]: crate::ParamCurve
/// [`eval`]: crate::ParamCurve::eval
/// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
pub trait ParamCurveFit {
/// Evaluate the curve and its tangent at parameter `t`.
///
/// For a regular curve (one not containing a cusp or corner), the
/// derivative is a good choice for the tangent vector and the `sign`
/// parameter can be ignored. Otherwise, the `sign` parameter selects which
/// side of the discontinuity the tangent will be sampled from.
///
/// Generally `t` is in the range [0..1].
fn sample_pt_tangent(&self, t: f64, sign: f64) -> CurveFitSample;
/// Evaluate the point and derivative at parameter `t`.
///
/// In curves with cusps, the derivative can go to zero.
fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2);
/// Compute moment integrals.
///
/// This method computes the integrals of y dx, x y dx, and y^2 dx over the
/// length of this curve. From these integrals it is fairly straightforward
/// to derive the moments needed for curve fitting.
///
/// A default implementation is proved which does quadrature integration
/// with Green's theorem, in terms of samples evaluated with
/// [`sample_pt_deriv`].
///
/// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
let t0 = 0.5 * (range.start + range.end);
let dt = 0.5 * (range.end - range.start);
let (a, x, y) = GAUSS_LEGENDRE_COEFFS_16
.iter()
.map(|(wi, xi)| {
let t = t0 + xi * dt;
let (p, d) = self.sample_pt_deriv(t);
let a = wi * d.x * p.y;
let x = p.x * a;
let y = p.y * a;
(a, x, y)
})
.fold((0.0, 0.0, 0.0), |(a0, x0, y0), (a1, x1, y1)| {
(a0 + a1, x0 + x1, y0 + y1)
});
(a * dt, x * dt, y * dt)
}
/// Find a cusp or corner within the given range.
///
/// If the range contains a corner or cusp, return it. If there is more
/// than one such discontinuity, any can be reported, as the function will
/// be called repeatedly after subdivision of the range.
///
/// Do not report cusps at the endpoints of the range, as this may cause
/// potentially infinite subdivision. In particular, when a cusp is reported
/// and this method is called on a subdivided range bounded by the reported
/// cusp, then the subsequent call should not report a cusp there.
///
/// The definition of what exactly constitutes a cusp is somewhat loose.
/// If a cusp is missed, then the curve fitting algorithm will attempt to
/// fit the curve with a smooth curve, which is generally not a disaster
/// will usually result in more subdivision. Conversely, it might be useful
/// to report near-cusps, specifically points of curvature maxima where the
/// curvature is large but still mathematically finite.
fn break_cusp(&self, range: Range<f64>) -> Option<f64>;
}
/// A sample point of a curve for fitting.
pub struct CurveFitSample {
/// A point on the curve at the sample location.
pub p: Point,
/// A vector tangent to the curve at the sample location.
pub tangent: Vec2,
}
impl CurveFitSample {
/// Intersect a ray orthogonal to the tangent with the given cubic.
///
/// Returns a vector of `t` values on the cubic.
fn intersect(&self, c: CubicBez) -> ArrayVec<f64, 3> {
let p1 = 3.0 * (c.p1 - c.p0);
let p2 = 3.0 * c.p2.to_vec2() - 6.0 * c.p1.to_vec2() + 3.0 * c.p0.to_vec2();
let p3 = (c.p3 - c.p0) - 3.0 * (c.p2 - c.p1);
let c0 = (c.p0 - self.p).dot(self.tangent);
let c1 = p1.dot(self.tangent);
let c2 = p2.dot(self.tangent);
let c3 = p3.dot(self.tangent);
solve_cubic(c0, c1, c2, c3)
.into_iter()
.filter(|t| (0.0..=1.0).contains(t))
.collect()
}
}
/// Generate a Bézier path that fits the source curve.
///
/// This function is still experimental and the signature might change; it's possible
/// it might become a method on the [`ParamCurveFit`] trait.
///
/// This function recursively subdivides the curve in half by the parameter when the
/// accuracy is not met. That gives a reasonably optimized result but not necessarily
/// the minimum number of segments.
///
/// In general, the resulting Bézier path should have a Fréchet distance less than
/// the provided `accuracy` parameter. However, this is not a rigorous guarantee, as
/// the error metric is computed approximately.
///
/// This function is intended for use when the source curve is piecewise continuous,
/// with the discontinuities reported by the cusp method. In applications (such as
/// stroke expansion) where this property may not hold, it is up to the client to
/// detect and handle such cases. Even so, best effort is made to avoid infinite
/// subdivision.
///
/// When a higher degree of optimization is desired (at considerably more runtime cost),
/// consider [`fit_to_bezpath_opt`] instead.
pub fn fit_to_bezpath(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
let mut path = BezPath::new();
fit_to_bezpath_rec(source, 0.0..1.0, accuracy, &mut path);
path
}
// Discussion question: possibly should take endpoint samples, to avoid
// duplication of that work.
fn fit_to_bezpath_rec(
source: &impl ParamCurveFit,
range: Range<f64>,
accuracy: f64,
path: &mut BezPath,
) {
let start = range.start;
let end = range.end;
let start_p = source.sample_pt_tangent(range.start, 1.0).p;
let end_p = source.sample_pt_tangent(range.end, -1.0).p;
if start_p.distance_squared(end_p) <= accuracy * accuracy {
if let Some((c, _)) = try_fit_line(source, accuracy, range, start_p, end_p) {
if path.is_empty() {
path.move_to(c.p0);
}
path.curve_to(c.p1, c.p2, c.p3);
return;
}
}
let t = if let Some(t) = source.break_cusp(start..end) {
t
} else if let Some((c, _)) = fit_to_cubic(source, start..end, accuracy) {
if path.is_empty() {
path.move_to(c.p0);
}
path.curve_to(c.p1, c.p2, c.p3);
return;
} else {
// A smarter approach is possible than midpoint subdivision, but would be
// a significant increase in complexity.
0.5 * (start + end)
};
if t == start || t == end {
// infinite recursion, just draw a line
let p1 = start_p.lerp(end_p, 1.0 / 3.0);
let p2 = end_p.lerp(start_p, 1.0 / 3.0);
if path.is_empty() {
path.move_to(start_p);
}
path.curve_to(p1, p2, end_p);
return;
}
fit_to_bezpath_rec(source, start..t, accuracy, path);
fit_to_bezpath_rec(source, t..end, accuracy, path);
}
const N_SAMPLE: usize = 20;
/// An acceleration structure for estimating curve distance
struct CurveDist {
samples: ArrayVec<CurveFitSample, N_SAMPLE>,
arcparams: ArrayVec<f64, N_SAMPLE>,
range: Range<f64>,
/// A "spicy" curve is one with potentially extreme curvature variation,
/// so use arc length measurement for better accuracy.
spicy: bool,
}
impl CurveDist {
fn from_curve(source: &impl ParamCurveFit, range: Range<f64>) -> Self {
let step = (range.end - range.start) * (1.0 / (N_SAMPLE + 1) as f64);
let mut last_tan = None;
let mut spicy = false;
const SPICY_THRESH: f64 = 0.2;
let mut samples = ArrayVec::new();
for i in 0..N_SAMPLE + 2 {
let sample = source.sample_pt_tangent(range.start + i as f64 * step, 1.0);
if let Some(last_tan) = last_tan {
let cross = sample.tangent.cross(last_tan);
let dot = sample.tangent.dot(last_tan);
if cross.abs() > SPICY_THRESH * dot.abs() {
spicy = true;
}
}
last_tan = Some(sample.tangent);
if i > 0 && i < N_SAMPLE + 1 {
samples.push(sample);
}
}
CurveDist {
samples,
arcparams: Default::default(),
range,
spicy,
}
}
fn compute_arc_params(&mut self, source: &impl ParamCurveFit) {
const N_SUBSAMPLE: usize = 10;
let (start, end) = (self.range.start, self.range.end);
let dt = (end - start) * (1.0 / ((N_SAMPLE + 1) * N_SUBSAMPLE) as f64);
let mut arclen = 0.0;
for i in 0..N_SAMPLE + 1 {
for j in 0..N_SUBSAMPLE {
let t = start + dt * ((i * N_SUBSAMPLE + j) as f64 + 0.5);
let (_, deriv) = source.sample_pt_deriv(t);
arclen += deriv.hypot();
}
if i < N_SAMPLE {
self.arcparams.push(arclen);
}
}
let arclen_inv = arclen.recip();
for x in &mut self.arcparams {
*x *= arclen_inv;
}
}
/// Evaluate distance based on arc length parametrization
fn eval_arc(&self, c: CubicBez, acc2: f64) -> Option<f64> {
// TODO: this could perhaps be tuned.
const EPS: f64 = 1e-9;
let c_arclen = c.arclen(EPS);
let mut max_err2 = 0.0;
for (sample, s) in self.samples.iter().zip(&self.arcparams) {
let t = c.inv_arclen(c_arclen * s, EPS);
let err = sample.p.distance_squared(c.eval(t));
max_err2 = err.max(max_err2);
if max_err2 > acc2 {
return None;
}
}
Some(max_err2)
}
/// Evaluate distance to a cubic approximation.
///
/// If distance exceeds stated accuracy, can return `None`. Note that
/// `acc2` is the square of the target.
///
/// Returns the square of the error, which is intended to be a good
/// approximation of the Fréchet distance.
fn eval_ray(&self, c: CubicBez, acc2: f64) -> Option<f64> {
let mut max_err2 = 0.0;
for sample in &self.samples {
let mut best = acc2 + 1.0;
for t in sample.intersect(c) {
let err = sample.p.distance_squared(c.eval(t));
best = best.min(err);
}
max_err2 = best.max(max_err2);
if max_err2 > acc2 {
return None;
}
}
Some(max_err2)
}
fn eval_dist(&mut self, source: &impl ParamCurveFit, c: CubicBez, acc2: f64) -> Option<f64> {
// Always compute cheaper distance, hoping for early-out.
let ray_dist = self.eval_ray(c, acc2)?;
if !self.spicy {
return Some(ray_dist);
}
if self.arcparams.is_empty() {
self.compute_arc_params(source);
}
self.eval_arc(c, acc2)
}
}
/// As described in [Simplifying Bézier paths], strictly optimizing for
/// Fréchet distance can create bumps. The problem is curves with long
/// control arms (distance from the control point to the corresponding
/// endpoint). We mitigate that by applying a penalty as a multiplier to
/// the measured error (approximate Fréchet distance). This is ReLU-like,
/// with a value of 1.0 below the elbow, and a given slope above it. The
/// values here have been determined empirically to give good results.
///
/// [Simplifying Bézier paths]:
/// https://raphlinus.github.io/curves/2023/04/18/bezpath-simplify.html
const D_PENALTY_ELBOW: f64 = 0.65;
const D_PENALTY_SLOPE: f64 = 2.0;
/// Try fitting a line.
///
/// This is especially useful for very short chords, in which the standard
/// cubic fit is not numerically stable. The tangents are not considered, so
/// it's useful in cusp and near-cusp situations where the tangents are not
/// reliable, as well.
///
/// Returns the line raised to a cubic and the error, if within tolerance.
fn try_fit_line(
source: &impl ParamCurveFit,
accuracy: f64,
range: Range<f64>,
start: Point,
end: Point,
) -> Option<(CubicBez, f64)> {
let acc2 = accuracy * accuracy;
let chord_l = Line::new(start, end);
const SHORT_N: usize = 7;
let mut max_err2 = 0.0;
let dt = (range.end - range.start) / (SHORT_N + 1) as f64;
for i in 0..SHORT_N {
let t = range.start + (i + 1) as f64 * dt;
let p = source.sample_pt_deriv(t).0;
let err2 = chord_l.nearest(p, accuracy).distance_sq;
if err2 > acc2 {
// Not in tolerance; likely subdivision will help.
return None;
}
max_err2 = err2.max(max_err2);
}
let p1 = start.lerp(end, 1.0 / 3.0);
let p2 = end.lerp(start, 1.0 / 3.0);
let c = CubicBez::new(start, p1, p2, end);
Some((c, max_err2))
}
/// Fit a single cubic to a range of the source curve.
///
/// Returns the cubic segment and the square of the error.
/// Discussion question: should this be a method on the trait instead?
pub fn fit_to_cubic(
source: &impl ParamCurveFit,
range: Range<f64>,
accuracy: f64,
) -> Option<(CubicBez, f64)> {
let start = source.sample_pt_tangent(range.start, 1.0);
let end = source.sample_pt_tangent(range.end, -1.0);
let d = end.p - start.p;
let chord2 = d.hypot2();
let acc2 = accuracy * accuracy;
if chord2 <= acc2 {
// Special case very short chords; try to fit a line.
return try_fit_line(source, accuracy, range, start.p, end.p);
}
let th = d.atan2();
fn mod_2pi(th: f64) -> f64 {
let th_scaled = th * core::f64::consts::FRAC_1_PI * 0.5;
core::f64::consts::PI * 2.0 * (th_scaled - th_scaled.round())
}
let th0 = mod_2pi(start.tangent.atan2() - th);
let th1 = mod_2pi(th - end.tangent.atan2());
let (mut area, mut x, mut y) = source.moment_integrals(range.clone());
let (x0, y0) = (start.p.x, start.p.y);
let (dx, dy) = (d.x, d.y);
// Subtract off area of chord
area -= dx * (y0 + 0.5 * dy);
// `area` is signed area of closed curve segment.
// This quantity is invariant to translation and rotation.
// Subtract off moment of chord
let dy_3 = dy * (1. / 3.);
x -= dx * (x0 * y0 + 0.5 * (x0 * dy + y0 * dx) + dy_3 * dx);
y -= dx * (y0 * y0 + y0 * dy + dy_3 * dy);
// Translate start point to origin; convert raw integrals to moments.
x -= x0 * area;
y = 0.5 * y - y0 * area;
// Rotate into place (this also scales up by chordlength for efficiency).
let moment = d.x * x + d.y * y;
// `moment` is the chordlength times the x moment of the curve translated
// so its start point is on the origin, and rotated so its end point is on the
// x axis.
let chord2_inv = chord2.recip();
let unit_area = area * chord2_inv;
let mx = moment * chord2_inv.powi(2);
// `unit_area` is signed area scaled to unit chord; `mx` is scaled x moment
let chord = chord2.sqrt();
let aff = Affine::translate(start.p.to_vec2()) * Affine::rotate(th) * Affine::scale(chord);
let mut curve_dist = CurveDist::from_curve(source, range);
let mut best_c = None;
let mut best_err2 = None;
for (cand, d0, d1) in cubic_fit(th0, th1, unit_area, mx) {
let c = aff * cand;
if let Some(err2) = curve_dist.eval_dist(source, c, acc2) {
fn scale_f(d: f64) -> f64 {
1.0 + (d - D_PENALTY_ELBOW).max(0.0) * D_PENALTY_SLOPE
}
let scale = scale_f(d0).max(scale_f(d1)).powi(2);
let err2 = err2 * scale;
if err2 < acc2 && best_err2.map(|best| err2 < best).unwrap_or(true) {
best_c = Some(c);
best_err2 = Some(err2);
}
}
}
match (best_c, best_err2) {
(Some(c), Some(err2)) => Some((c, err2)),
_ => None,
}
}
/// Returns curves matching area and moment, given unit chord.
fn cubic_fit(th0: f64, th1: f64, area: f64, mx: f64) -> ArrayVec<(CubicBez, f64, f64), 4> {
// Note: maybe we want to take unit vectors instead of angle? Shouldn't
// matter much either way though.
let (s0, c0) = th0.sin_cos();
let (s1, c1) = th1.sin_cos();
let a4 = -9.
* c0
* (((2. * s1 * c1 * c0 + s0 * (2. * c1 * c1 - 1.)) * c0 - 2. * s1 * c1) * c0
- c1 * c1 * s0);
let a3 = 12.
* ((((c1 * (30. * area * c1 - s1) - 15. * area) * c0 + 2. * s0
- c1 * s0 * (c1 + 30. * area * s1))
* c0
+ c1 * (s1 - 15. * area * c1))
* c0
- s0 * c1 * c1);
let a2 = 12.
* ((((70. * mx + 15. * area) * s1 * s1 + c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area))
* c0
- 5. * s0 * s1 * (3. * s1 - 4. * c1 * (7. * mx + area)))
* c0
- c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area));
let a1 = 16.
* (((12. * s0 - 5. * c0 * (42. * mx - 17. * area)) * s1
- 70. * c1 * (3. * mx - area) * s0
- 75. * c0 * c1 * area * area)
* s1
- 75. * c1 * c1 * area * area * s0);
let a0 = 80. * s1 * (42. * s1 * mx - 25. * area * (s1 - c1 * area));
// TODO: "roots" is not a good name for this variable, as it also contains
// the real part of complex conjugate pairs.
let mut roots = ArrayVec::<f64, 4>::new();
const EPS: f64 = 1e-12;
if a4.abs() > EPS {
let a = a3 / a4;
let b = a2 / a4;
let c = a1 / a4;
let d = a0 / a4;
if let Some(quads) = factor_quartic_inner(a, b, c, d, false) {
for (qc1, qc0) in quads {
let qroots = solve_quadratic(qc0, qc1, 1.0);
if qroots.is_empty() {
// Real part of pair of complex roots
roots.push(-0.5 * qc1);
} else {
roots.extend(qroots);
}
}
}
} else if a3.abs() > EPS {
roots.extend(solve_cubic(a0, a1, a2, a3));
} else if a2.abs() > EPS || a1.abs() > EPS || a0.abs() > EPS {
roots.extend(solve_quadratic(a0, a1, a2));
} else {
return [(
CubicBez::new((0.0, 0.0), (1. / 3., 0.0), (2. / 3., 0.0), (1., 0.0)),
1f64 / 3.,
1f64 / 3.,
)]
.into_iter()
.collect();
}
let s01 = s0 * c1 + s1 * c0;
roots
.iter()
.filter_map(|&d0| {
let (d0, d1) = if d0 > 0.0 {
let d1 = (d0 * s0 - area * (10. / 3.)) / (0.5 * d0 * s01 - s1);
if d1 > 0.0 {
(d0, d1)
} else {
(s1 / s01, 0.0)
}
} else {
(0.0, s0 / s01)
};
// We could implement a maximum d value here.
if d0 >= 0.0 && d1 >= 0.0 {
Some((
CubicBez::new(
(0.0, 0.0),
(d0 * c0, d0 * s0),
(1.0 - d1 * c1, d1 * s1),
(1.0, 0.0),
),
d0,
d1,
))
} else {
None
}
})
.collect()
}
/// Generate a highly optimized Bézier path that fits the source curve.
///
/// This function is still experimental and the signature might change; it's possible
/// it might become a method on the [`ParamCurveFit`] trait.
///
/// This function is considerably slower than [`fit_to_bezpath`], as it computes
/// optimal subdivision points. Its result is expected to be very close to the optimum
/// possible Bézier path for the source curve, in that it has a minimal number of curve
/// segments, and a minimal error over all paths with that number of segments.
///
/// See [`fit_to_bezpath`] for an explanation of the `accuracy` parameter.
pub fn fit_to_bezpath_opt(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
let mut cusps = Vec::new();
let mut path = BezPath::new();
let mut t0 = 0.0;
loop {
let t1 = cusps.last().copied().unwrap_or(1.0);
match fit_to_bezpath_opt_inner(source, accuracy, t0..t1, &mut path) {
Some(t) => cusps.push(t),
None => match cusps.pop() {
Some(t) => t0 = t,
None => break,
},
}
}
path
}
/// Fit a range without cusps.
///
/// On Ok return, range has been added to the path. On Err return, report a cusp (and don't
/// mutate path).
fn fit_to_bezpath_opt_inner(
source: &impl ParamCurveFit,
accuracy: f64,
range: Range<f64>,
path: &mut BezPath,
) -> Option<f64> {
if let Some(t) = source.break_cusp(range.clone()) {
return Some(t);
}
let err;
if let Some((c, err2)) = fit_to_cubic(source, range.clone(), accuracy) {
err = err2.sqrt();
if err < accuracy {
if range.start == 0.0 {
path.move_to(c.p0);
}
path.curve_to(c.p1, c.p2, c.p3);
return None;
}
} else {
err = 2.0 * accuracy;
}
let (mut t0, t1) = (range.start, range.end);
let mut n = 0;
let last_err;
loop {
n += 1;
match fit_opt_segment(source, accuracy, t0..t1) {
FitResult::ParamVal(t) => t0 = t,
FitResult::SegmentError(err) => {
last_err = err;
break;
}
FitResult::CuspFound(t) => return Some(t),
}
}
t0 = range.start;
const EPS: f64 = 1e-9;
let f = |x| fit_opt_err_delta(source, x, accuracy, t0..t1, n);
let k1 = 0.2 / accuracy;
let ya = -err;
let yb = accuracy - last_err;
let (_, x) = match solve_itp_fallible(f, 0.0, accuracy, EPS, 1, k1, ya, yb) {
Ok(x) => x,
Err(t) => return Some(t),
};
//println!("got fit with n={}, err={}", n, x);
let path_len = path.elements().len();
for i in 0..n {
let t1 = if i < n - 1 {
match fit_opt_segment(source, x, t0..range.end) {
FitResult::ParamVal(t1) => t1,
FitResult::SegmentError(_) => range.end,
FitResult::CuspFound(t) => {
path.truncate(path_len);
return Some(t);
}
}
} else {
range.end
};
let (c, _) = fit_to_cubic(source, t0..t1, accuracy).unwrap();
if i == 0 && range.start == 0.0 {
path.move_to(c.p0);
}
path.curve_to(c.p1, c.p2, c.p3);
t0 = t1;
if t0 == range.end {
// This is unlikely but could happen when not monotonic.
break;
}
}
None
}
fn measure_one_seg(source: &impl ParamCurveFit, range: Range<f64>, limit: f64) -> Option<f64> {
fit_to_cubic(source, range, limit).map(|(_, err2)| err2.sqrt())
}
enum FitResult {
/// The parameter (`t`) value that meets the desired accuracy.
ParamVal(f64),
/// Error of the measured segment.
SegmentError(f64),
/// The parameter value where a cusp was found.
CuspFound(f64),
}
fn fit_opt_segment(source: &impl ParamCurveFit, accuracy: f64, range: Range<f64>) -> FitResult {
if let Some(t) = source.break_cusp(range.clone()) {
return FitResult::CuspFound(t);
}
let missing_err = accuracy * 2.0;
let err = measure_one_seg(source, range.clone(), accuracy).unwrap_or(missing_err);
if err <= accuracy {
return FitResult::SegmentError(err);
}
let (t0, t1) = (range.start, range.end);
let f = |x| {
if let Some(t) = source.break_cusp(range.clone()) {
return Err(t);
}
let err = measure_one_seg(source, t0..x, accuracy).unwrap_or(missing_err);
Ok(err - accuracy)
};
const EPS: f64 = 1e-9;
let k1 = 2.0 / (t1 - t0);
match solve_itp_fallible(f, t0, t1, EPS, 1, k1, -accuracy, err - accuracy) {
Ok((t1, _)) => FitResult::ParamVal(t1),
Err(t) => FitResult::CuspFound(t),
}
}
// Ok result is delta error (accuracy - error of last seg).
// Err result is a cusp.
fn fit_opt_err_delta(
source: &impl ParamCurveFit,
accuracy: f64,
limit: f64,
range: Range<f64>,
n: usize,
) -> Result<f64, f64> {
let (mut t0, t1) = (range.start, range.end);
for _ in 0..n - 1 {
t0 = match fit_opt_segment(source, accuracy, t0..t1) {
FitResult::ParamVal(t0) => t0,
// In this case, n - 1 will work, which of course means the error is highly
// non-monotonic. We should probably harvest that solution.
FitResult::SegmentError(_) => return Ok(accuracy),
FitResult::CuspFound(t) => return Err(t),
}
}
let err = measure_one_seg(source, t0..t1, limit).unwrap_or(accuracy * 2.0);
Ok(accuracy - err)
}