kurbo/
fit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
// Copyright 2022 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! An implementation of cubic Bézier curve fitting based on a quartic
//! solver making signed area and moment match the source curve.

use core::ops::Range;

use alloc::vec::Vec;

use arrayvec::ArrayVec;

use crate::{
    common::{
        factor_quartic_inner, solve_cubic, solve_itp_fallible, solve_quadratic,
        GAUSS_LEGENDRE_COEFFS_16,
    },
    Affine, BezPath, CubicBez, Line, ParamCurve, ParamCurveArclen, ParamCurveNearest, Point, Vec2,
};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// The source curve for curve fitting.
///
/// This trait is a general representation of curves to be used as input to a curve
/// fitting process. It can represent source curves with cusps and corners, though
/// if the corners are known in advance, it may be better to run curve fitting on
/// subcurves bounded by the corners.
///
/// The trait primarily works by sampling the source curve and computing the position
/// and derivative at each sample. Those derivatives are then used for multiple
/// sub-tasks, including ensuring G1 continuity at subdivision points, computing the
/// area and moment of the curve for curve fitting, and casting rays for evaluation
/// of a distance metric to test accuracy.
///
/// A major motivation is computation of offset curves, which often have cusps, but
/// the presence and location of those cusps is not generally known. It is also
/// intended for conversion between curve types (for example, piecewise Euler spiral
/// or NURBS), and distortion effects such as perspective transform.
///
/// Note general similarities to [`ParamCurve`] but also important differences.
/// Instead of separate [`eval`] and evaluation of derivative, have a single
/// [`sample_pt_deriv`] method which can be more efficient and also handles cusps more
/// robustly. Also there is no method for subsegment, as that is not needed and
/// would be annoying to implement.
///
/// [`ParamCurve`]: crate::ParamCurve
/// [`eval`]: crate::ParamCurve::eval
/// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
pub trait ParamCurveFit {
    /// Evaluate the curve and its tangent at parameter `t`.
    ///
    /// For a regular curve (one not containing a cusp or corner), the
    /// derivative is a good choice for the tangent vector and the `sign`
    /// parameter can be ignored. Otherwise, the `sign` parameter selects which
    /// side of the discontinuity the tangent will be sampled from.
    ///
    /// Generally `t` is in the range [0..1].
    fn sample_pt_tangent(&self, t: f64, sign: f64) -> CurveFitSample;

    /// Evaluate the point and derivative at parameter `t`.
    ///
    /// In curves with cusps, the derivative can go to zero.
    fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2);

    /// Compute moment integrals.
    ///
    /// This method computes the integrals of y dx, x y dx, and y^2 dx over the
    /// length of this curve. From these integrals it is fairly straightforward
    /// to derive the moments needed for curve fitting.
    ///
    /// A default implementation is proved which does quadrature integration
    /// with Green's theorem, in terms of samples evaluated with
    /// [`sample_pt_deriv`].
    ///
    /// [`sample_pt_deriv`]: ParamCurveFit::sample_pt_deriv
    fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
        let t0 = 0.5 * (range.start + range.end);
        let dt = 0.5 * (range.end - range.start);
        let (a, x, y) = GAUSS_LEGENDRE_COEFFS_16
            .iter()
            .map(|(wi, xi)| {
                let t = t0 + xi * dt;
                let (p, d) = self.sample_pt_deriv(t);
                let a = wi * d.x * p.y;
                let x = p.x * a;
                let y = p.y * a;
                (a, x, y)
            })
            .fold((0.0, 0.0, 0.0), |(a0, x0, y0), (a1, x1, y1)| {
                (a0 + a1, x0 + x1, y0 + y1)
            });
        (a * dt, x * dt, y * dt)
    }

    /// Find a cusp or corner within the given range.
    ///
    /// If the range contains a corner or cusp, return it. If there is more
    /// than one such discontinuity, any can be reported, as the function will
    /// be called repeatedly after subdivision of the range.
    ///
    /// Do not report cusps at the endpoints of the range, as this may cause
    /// potentially infinite subdivision. In particular, when a cusp is reported
    /// and this method is called on a subdivided range bounded by the reported
    /// cusp, then the subsequent call should not report a cusp there.
    ///
    /// The definition of what exactly constitutes a cusp is somewhat loose.
    /// If a cusp is missed, then the curve fitting algorithm will attempt to
    /// fit the curve with a smooth curve, which is generally not a disaster
    /// will usually result in more subdivision. Conversely, it might be useful
    /// to report near-cusps, specifically points of curvature maxima where the
    /// curvature is large but still mathematically finite.
    fn break_cusp(&self, range: Range<f64>) -> Option<f64>;
}

/// A sample point of a curve for fitting.
pub struct CurveFitSample {
    /// A point on the curve at the sample location.
    pub p: Point,
    /// A vector tangent to the curve at the sample location.
    pub tangent: Vec2,
}

impl CurveFitSample {
    /// Intersect a ray orthogonal to the tangent with the given cubic.
    ///
    /// Returns a vector of `t` values on the cubic.
    fn intersect(&self, c: CubicBez) -> ArrayVec<f64, 3> {
        let p1 = 3.0 * (c.p1 - c.p0);
        let p2 = 3.0 * c.p2.to_vec2() - 6.0 * c.p1.to_vec2() + 3.0 * c.p0.to_vec2();
        let p3 = (c.p3 - c.p0) - 3.0 * (c.p2 - c.p1);
        let c0 = (c.p0 - self.p).dot(self.tangent);
        let c1 = p1.dot(self.tangent);
        let c2 = p2.dot(self.tangent);
        let c3 = p3.dot(self.tangent);
        solve_cubic(c0, c1, c2, c3)
            .into_iter()
            .filter(|t| (0.0..=1.0).contains(t))
            .collect()
    }
}

/// Generate a Bézier path that fits the source curve.
///
/// This function is still experimental and the signature might change; it's possible
/// it might become a method on the [`ParamCurveFit`] trait.
///
/// This function recursively subdivides the curve in half by the parameter when the
/// accuracy is not met. That gives a reasonably optimized result but not necessarily
/// the minimum number of segments.
///
/// In general, the resulting Bézier path should have a Fréchet distance less than
/// the provided `accuracy` parameter. However, this is not a rigorous guarantee, as
/// the error metric is computed approximately.
///
/// This function is intended for use when the source curve is piecewise continuous,
/// with the discontinuities reported by the cusp method. In applications (such as
/// stroke expansion) where this property may not hold, it is up to the client to
/// detect and handle such cases. Even so, best effort is made to avoid infinite
/// subdivision.
///
/// When a higher degree of optimization is desired (at considerably more runtime cost),
/// consider [`fit_to_bezpath_opt`] instead.
pub fn fit_to_bezpath(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
    let mut path = BezPath::new();
    fit_to_bezpath_rec(source, 0.0..1.0, accuracy, &mut path);
    path
}

// Discussion question: possibly should take endpoint samples, to avoid
// duplication of that work.
fn fit_to_bezpath_rec(
    source: &impl ParamCurveFit,
    range: Range<f64>,
    accuracy: f64,
    path: &mut BezPath,
) {
    let start = range.start;
    let end = range.end;
    let start_p = source.sample_pt_tangent(range.start, 1.0).p;
    let end_p = source.sample_pt_tangent(range.end, -1.0).p;
    if start_p.distance_squared(end_p) <= accuracy * accuracy {
        if let Some((c, _)) = try_fit_line(source, accuracy, range, start_p, end_p) {
            if path.is_empty() {
                path.move_to(c.p0);
            }
            path.curve_to(c.p1, c.p2, c.p3);
            return;
        }
    }
    let t = if let Some(t) = source.break_cusp(start..end) {
        t
    } else if let Some((c, _)) = fit_to_cubic(source, start..end, accuracy) {
        if path.is_empty() {
            path.move_to(c.p0);
        }
        path.curve_to(c.p1, c.p2, c.p3);
        return;
    } else {
        // A smarter approach is possible than midpoint subdivision, but would be
        // a significant increase in complexity.
        0.5 * (start + end)
    };
    if t == start || t == end {
        // infinite recursion, just draw a line
        let p1 = start_p.lerp(end_p, 1.0 / 3.0);
        let p2 = end_p.lerp(start_p, 1.0 / 3.0);
        if path.is_empty() {
            path.move_to(start_p);
        }
        path.curve_to(p1, p2, end_p);
        return;
    }
    fit_to_bezpath_rec(source, start..t, accuracy, path);
    fit_to_bezpath_rec(source, t..end, accuracy, path);
}

const N_SAMPLE: usize = 20;

/// An acceleration structure for estimating curve distance
struct CurveDist {
    samples: ArrayVec<CurveFitSample, N_SAMPLE>,
    arcparams: ArrayVec<f64, N_SAMPLE>,
    range: Range<f64>,
    /// A "spicy" curve is one with potentially extreme curvature variation,
    /// so use arc length measurement for better accuracy.
    spicy: bool,
}

impl CurveDist {
    fn from_curve(source: &impl ParamCurveFit, range: Range<f64>) -> Self {
        let step = (range.end - range.start) * (1.0 / (N_SAMPLE + 1) as f64);
        let mut last_tan = None;
        let mut spicy = false;
        const SPICY_THRESH: f64 = 0.2;
        let mut samples = ArrayVec::new();
        for i in 0..N_SAMPLE + 2 {
            let sample = source.sample_pt_tangent(range.start + i as f64 * step, 1.0);
            if let Some(last_tan) = last_tan {
                let cross = sample.tangent.cross(last_tan);
                let dot = sample.tangent.dot(last_tan);
                if cross.abs() > SPICY_THRESH * dot.abs() {
                    spicy = true;
                }
            }
            last_tan = Some(sample.tangent);
            if i > 0 && i < N_SAMPLE + 1 {
                samples.push(sample);
            }
        }
        CurveDist {
            samples,
            arcparams: Default::default(),
            range,
            spicy,
        }
    }

    fn compute_arc_params(&mut self, source: &impl ParamCurveFit) {
        const N_SUBSAMPLE: usize = 10;
        let (start, end) = (self.range.start, self.range.end);
        let dt = (end - start) * (1.0 / ((N_SAMPLE + 1) * N_SUBSAMPLE) as f64);
        let mut arclen = 0.0;
        for i in 0..N_SAMPLE + 1 {
            for j in 0..N_SUBSAMPLE {
                let t = start + dt * ((i * N_SUBSAMPLE + j) as f64 + 0.5);
                let (_, deriv) = source.sample_pt_deriv(t);
                arclen += deriv.hypot();
            }
            if i < N_SAMPLE {
                self.arcparams.push(arclen);
            }
        }
        let arclen_inv = arclen.recip();
        for x in &mut self.arcparams {
            *x *= arclen_inv;
        }
    }

    /// Evaluate distance based on arc length parametrization
    fn eval_arc(&self, c: CubicBez, acc2: f64) -> Option<f64> {
        // TODO: this could perhaps be tuned.
        const EPS: f64 = 1e-9;
        let c_arclen = c.arclen(EPS);
        let mut max_err2 = 0.0;
        for (sample, s) in self.samples.iter().zip(&self.arcparams) {
            let t = c.inv_arclen(c_arclen * s, EPS);
            let err = sample.p.distance_squared(c.eval(t));
            max_err2 = err.max(max_err2);
            if max_err2 > acc2 {
                return None;
            }
        }
        Some(max_err2)
    }

    /// Evaluate distance to a cubic approximation.
    ///
    /// If distance exceeds stated accuracy, can return `None`. Note that
    /// `acc2` is the square of the target.
    ///
    /// Returns the square of the error, which is intended to be a good
    /// approximation of the Fréchet distance.
    fn eval_ray(&self, c: CubicBez, acc2: f64) -> Option<f64> {
        let mut max_err2 = 0.0;
        for sample in &self.samples {
            let mut best = acc2 + 1.0;
            for t in sample.intersect(c) {
                let err = sample.p.distance_squared(c.eval(t));
                best = best.min(err);
            }
            max_err2 = best.max(max_err2);
            if max_err2 > acc2 {
                return None;
            }
        }
        Some(max_err2)
    }

    fn eval_dist(&mut self, source: &impl ParamCurveFit, c: CubicBez, acc2: f64) -> Option<f64> {
        // Always compute cheaper distance, hoping for early-out.
        let ray_dist = self.eval_ray(c, acc2)?;
        if !self.spicy {
            return Some(ray_dist);
        }
        if self.arcparams.is_empty() {
            self.compute_arc_params(source);
        }
        self.eval_arc(c, acc2)
    }
}

/// As described in [Simplifying Bézier paths], strictly optimizing for
/// Fréchet distance can create bumps. The problem is curves with long
/// control arms (distance from the control point to the corresponding
/// endpoint). We mitigate that by applying a penalty as a multiplier to
/// the measured error (approximate Fréchet distance). This is ReLU-like,
/// with a value of 1.0 below the elbow, and a given slope above it. The
/// values here have been determined empirically to give good results.
///
/// [Simplifying Bézier paths]:
/// https://raphlinus.github.io/curves/2023/04/18/bezpath-simplify.html
const D_PENALTY_ELBOW: f64 = 0.65;
const D_PENALTY_SLOPE: f64 = 2.0;

/// Try fitting a line.
///
/// This is especially useful for very short chords, in which the standard
/// cubic fit is not numerically stable. The tangents are not considered, so
/// it's useful in cusp and near-cusp situations where the tangents are not
/// reliable, as well.
///
/// Returns the line raised to a cubic and the error, if within tolerance.
fn try_fit_line(
    source: &impl ParamCurveFit,
    accuracy: f64,
    range: Range<f64>,
    start: Point,
    end: Point,
) -> Option<(CubicBez, f64)> {
    let acc2 = accuracy * accuracy;
    let chord_l = Line::new(start, end);
    const SHORT_N: usize = 7;
    let mut max_err2 = 0.0;
    let dt = (range.end - range.start) / (SHORT_N + 1) as f64;
    for i in 0..SHORT_N {
        let t = range.start + (i + 1) as f64 * dt;
        let p = source.sample_pt_deriv(t).0;
        let err2 = chord_l.nearest(p, accuracy).distance_sq;
        if err2 > acc2 {
            // Not in tolerance; likely subdivision will help.
            return None;
        }
        max_err2 = err2.max(max_err2);
    }
    let p1 = start.lerp(end, 1.0 / 3.0);
    let p2 = end.lerp(start, 1.0 / 3.0);
    let c = CubicBez::new(start, p1, p2, end);
    Some((c, max_err2))
}

/// Fit a single cubic to a range of the source curve.
///
/// Returns the cubic segment and the square of the error.
/// Discussion question: should this be a method on the trait instead?
pub fn fit_to_cubic(
    source: &impl ParamCurveFit,
    range: Range<f64>,
    accuracy: f64,
) -> Option<(CubicBez, f64)> {
    let start = source.sample_pt_tangent(range.start, 1.0);
    let end = source.sample_pt_tangent(range.end, -1.0);
    let d = end.p - start.p;
    let chord2 = d.hypot2();
    let acc2 = accuracy * accuracy;
    if chord2 <= acc2 {
        // Special case very short chords; try to fit a line.
        return try_fit_line(source, accuracy, range, start.p, end.p);
    }
    let th = d.atan2();
    fn mod_2pi(th: f64) -> f64 {
        let th_scaled = th * core::f64::consts::FRAC_1_PI * 0.5;
        core::f64::consts::PI * 2.0 * (th_scaled - th_scaled.round())
    }
    let th0 = mod_2pi(start.tangent.atan2() - th);
    let th1 = mod_2pi(th - end.tangent.atan2());

    let (mut area, mut x, mut y) = source.moment_integrals(range.clone());
    let (x0, y0) = (start.p.x, start.p.y);
    let (dx, dy) = (d.x, d.y);
    // Subtract off area of chord
    area -= dx * (y0 + 0.5 * dy);
    // `area` is signed area of closed curve segment.
    // This quantity is invariant to translation and rotation.

    // Subtract off moment of chord
    let dy_3 = dy * (1. / 3.);
    x -= dx * (x0 * y0 + 0.5 * (x0 * dy + y0 * dx) + dy_3 * dx);
    y -= dx * (y0 * y0 + y0 * dy + dy_3 * dy);
    // Translate start point to origin; convert raw integrals to moments.
    x -= x0 * area;
    y = 0.5 * y - y0 * area;
    // Rotate into place (this also scales up by chordlength for efficiency).
    let moment = d.x * x + d.y * y;
    // `moment` is the chordlength times the x moment of the curve translated
    // so its start point is on the origin, and rotated so its end point is on the
    // x axis.

    let chord2_inv = chord2.recip();
    let unit_area = area * chord2_inv;
    let mx = moment * chord2_inv.powi(2);
    // `unit_area` is signed area scaled to unit chord; `mx` is scaled x moment

    let chord = chord2.sqrt();
    let aff = Affine::translate(start.p.to_vec2()) * Affine::rotate(th) * Affine::scale(chord);
    let mut curve_dist = CurveDist::from_curve(source, range);
    let mut best_c = None;
    let mut best_err2 = None;
    for (cand, d0, d1) in cubic_fit(th0, th1, unit_area, mx) {
        let c = aff * cand;
        if let Some(err2) = curve_dist.eval_dist(source, c, acc2) {
            fn scale_f(d: f64) -> f64 {
                1.0 + (d - D_PENALTY_ELBOW).max(0.0) * D_PENALTY_SLOPE
            }
            let scale = scale_f(d0).max(scale_f(d1)).powi(2);
            let err2 = err2 * scale;
            if err2 < acc2 && best_err2.map(|best| err2 < best).unwrap_or(true) {
                best_c = Some(c);
                best_err2 = Some(err2);
            }
        }
    }
    match (best_c, best_err2) {
        (Some(c), Some(err2)) => Some((c, err2)),
        _ => None,
    }
}

/// Returns curves matching area and moment, given unit chord.
fn cubic_fit(th0: f64, th1: f64, area: f64, mx: f64) -> ArrayVec<(CubicBez, f64, f64), 4> {
    // Note: maybe we want to take unit vectors instead of angle? Shouldn't
    // matter much either way though.
    let (s0, c0) = th0.sin_cos();
    let (s1, c1) = th1.sin_cos();
    let a4 = -9.
        * c0
        * (((2. * s1 * c1 * c0 + s0 * (2. * c1 * c1 - 1.)) * c0 - 2. * s1 * c1) * c0
            - c1 * c1 * s0);
    let a3 = 12.
        * ((((c1 * (30. * area * c1 - s1) - 15. * area) * c0 + 2. * s0
            - c1 * s0 * (c1 + 30. * area * s1))
            * c0
            + c1 * (s1 - 15. * area * c1))
            * c0
            - s0 * c1 * c1);
    let a2 = 12.
        * ((((70. * mx + 15. * area) * s1 * s1 + c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area))
            * c0
            - 5. * s0 * s1 * (3. * s1 - 4. * c1 * (7. * mx + area)))
            * c0
            - c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area));
    let a1 = 16.
        * (((12. * s0 - 5. * c0 * (42. * mx - 17. * area)) * s1
            - 70. * c1 * (3. * mx - area) * s0
            - 75. * c0 * c1 * area * area)
            * s1
            - 75. * c1 * c1 * area * area * s0);
    let a0 = 80. * s1 * (42. * s1 * mx - 25. * area * (s1 - c1 * area));
    // TODO: "roots" is not a good name for this variable, as it also contains
    // the real part of complex conjugate pairs.
    let mut roots = ArrayVec::<f64, 4>::new();
    const EPS: f64 = 1e-12;
    if a4.abs() > EPS {
        let a = a3 / a4;
        let b = a2 / a4;
        let c = a1 / a4;
        let d = a0 / a4;
        if let Some(quads) = factor_quartic_inner(a, b, c, d, false) {
            for (qc1, qc0) in quads {
                let qroots = solve_quadratic(qc0, qc1, 1.0);
                if qroots.is_empty() {
                    // Real part of pair of complex roots
                    roots.push(-0.5 * qc1);
                } else {
                    roots.extend(qroots);
                }
            }
        }
    } else if a3.abs() > EPS {
        roots.extend(solve_cubic(a0, a1, a2, a3));
    } else if a2.abs() > EPS || a1.abs() > EPS || a0.abs() > EPS {
        roots.extend(solve_quadratic(a0, a1, a2));
    } else {
        return [(
            CubicBez::new((0.0, 0.0), (1. / 3., 0.0), (2. / 3., 0.0), (1., 0.0)),
            1f64 / 3.,
            1f64 / 3.,
        )]
        .into_iter()
        .collect();
    }

    let s01 = s0 * c1 + s1 * c0;
    roots
        .iter()
        .filter_map(|&d0| {
            let (d0, d1) = if d0 > 0.0 {
                let d1 = (d0 * s0 - area * (10. / 3.)) / (0.5 * d0 * s01 - s1);
                if d1 > 0.0 {
                    (d0, d1)
                } else {
                    (s1 / s01, 0.0)
                }
            } else {
                (0.0, s0 / s01)
            };
            // We could implement a maximum d value here.
            if d0 >= 0.0 && d1 >= 0.0 {
                Some((
                    CubicBez::new(
                        (0.0, 0.0),
                        (d0 * c0, d0 * s0),
                        (1.0 - d1 * c1, d1 * s1),
                        (1.0, 0.0),
                    ),
                    d0,
                    d1,
                ))
            } else {
                None
            }
        })
        .collect()
}

/// Generate a highly optimized Bézier path that fits the source curve.
///
/// This function is still experimental and the signature might change; it's possible
/// it might become a method on the [`ParamCurveFit`] trait.
///
/// This function is considerably slower than [`fit_to_bezpath`], as it computes
/// optimal subdivision points. Its result is expected to be very close to the optimum
/// possible Bézier path for the source curve, in that it has a minimal number of curve
/// segments, and a minimal error over all paths with that number of segments.
///
/// See [`fit_to_bezpath`] for an explanation of the `accuracy` parameter.
pub fn fit_to_bezpath_opt(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
    let mut cusps = Vec::new();
    let mut path = BezPath::new();
    let mut t0 = 0.0;
    loop {
        let t1 = cusps.last().copied().unwrap_or(1.0);
        match fit_to_bezpath_opt_inner(source, accuracy, t0..t1, &mut path) {
            Some(t) => cusps.push(t),
            None => match cusps.pop() {
                Some(t) => t0 = t,
                None => break,
            },
        }
    }
    path
}

/// Fit a range without cusps.
///
/// On Ok return, range has been added to the path. On Err return, report a cusp (and don't
/// mutate path).
fn fit_to_bezpath_opt_inner(
    source: &impl ParamCurveFit,
    accuracy: f64,
    range: Range<f64>,
    path: &mut BezPath,
) -> Option<f64> {
    if let Some(t) = source.break_cusp(range.clone()) {
        return Some(t);
    }
    let err;
    if let Some((c, err2)) = fit_to_cubic(source, range.clone(), accuracy) {
        err = err2.sqrt();
        if err < accuracy {
            if range.start == 0.0 {
                path.move_to(c.p0);
            }
            path.curve_to(c.p1, c.p2, c.p3);
            return None;
        }
    } else {
        err = 2.0 * accuracy;
    }
    let (mut t0, t1) = (range.start, range.end);
    let mut n = 0;
    let last_err;
    loop {
        n += 1;
        match fit_opt_segment(source, accuracy, t0..t1) {
            FitResult::ParamVal(t) => t0 = t,
            FitResult::SegmentError(err) => {
                last_err = err;
                break;
            }
            FitResult::CuspFound(t) => return Some(t),
        }
    }
    t0 = range.start;
    const EPS: f64 = 1e-9;
    let f = |x| fit_opt_err_delta(source, x, accuracy, t0..t1, n);
    let k1 = 0.2 / accuracy;
    let ya = -err;
    let yb = accuracy - last_err;
    let (_, x) = match solve_itp_fallible(f, 0.0, accuracy, EPS, 1, k1, ya, yb) {
        Ok(x) => x,
        Err(t) => return Some(t),
    };
    //println!("got fit with n={}, err={}", n, x);
    let path_len = path.elements().len();
    for i in 0..n {
        let t1 = if i < n - 1 {
            match fit_opt_segment(source, x, t0..range.end) {
                FitResult::ParamVal(t1) => t1,
                FitResult::SegmentError(_) => range.end,
                FitResult::CuspFound(t) => {
                    path.truncate(path_len);
                    return Some(t);
                }
            }
        } else {
            range.end
        };
        let (c, _) = fit_to_cubic(source, t0..t1, accuracy).unwrap();
        if i == 0 && range.start == 0.0 {
            path.move_to(c.p0);
        }
        path.curve_to(c.p1, c.p2, c.p3);
        t0 = t1;
        if t0 == range.end {
            // This is unlikely but could happen when not monotonic.
            break;
        }
    }
    None
}

fn measure_one_seg(source: &impl ParamCurveFit, range: Range<f64>, limit: f64) -> Option<f64> {
    fit_to_cubic(source, range, limit).map(|(_, err2)| err2.sqrt())
}

enum FitResult {
    /// The parameter (`t`) value that meets the desired accuracy.
    ParamVal(f64),
    /// Error of the measured segment.
    SegmentError(f64),
    /// The parameter value where a cusp was found.
    CuspFound(f64),
}

fn fit_opt_segment(source: &impl ParamCurveFit, accuracy: f64, range: Range<f64>) -> FitResult {
    if let Some(t) = source.break_cusp(range.clone()) {
        return FitResult::CuspFound(t);
    }
    let missing_err = accuracy * 2.0;
    let err = measure_one_seg(source, range.clone(), accuracy).unwrap_or(missing_err);
    if err <= accuracy {
        return FitResult::SegmentError(err);
    }
    let (t0, t1) = (range.start, range.end);
    let f = |x| {
        if let Some(t) = source.break_cusp(range.clone()) {
            return Err(t);
        }
        let err = measure_one_seg(source, t0..x, accuracy).unwrap_or(missing_err);
        Ok(err - accuracy)
    };
    const EPS: f64 = 1e-9;
    let k1 = 2.0 / (t1 - t0);
    match solve_itp_fallible(f, t0, t1, EPS, 1, k1, -accuracy, err - accuracy) {
        Ok((t1, _)) => FitResult::ParamVal(t1),
        Err(t) => FitResult::CuspFound(t),
    }
}

// Ok result is delta error (accuracy - error of last seg).
// Err result is a cusp.
fn fit_opt_err_delta(
    source: &impl ParamCurveFit,
    accuracy: f64,
    limit: f64,
    range: Range<f64>,
    n: usize,
) -> Result<f64, f64> {
    let (mut t0, t1) = (range.start, range.end);
    for _ in 0..n - 1 {
        t0 = match fit_opt_segment(source, accuracy, t0..t1) {
            FitResult::ParamVal(t0) => t0,
            // In this case, n - 1 will work, which of course means the error is highly
            // non-monotonic. We should probably harvest that solution.
            FitResult::SegmentError(_) => return Ok(accuracy),
            FitResult::CuspFound(t) => return Err(t),
        }
    }
    let err = measure_one_seg(source, t0..t1, limit).unwrap_or(accuracy * 2.0);
    Ok(accuracy - err)
}