1use core::ops::Range;
8
9use alloc::vec::Vec;
10
11use arrayvec::ArrayVec;
12
13use crate::{
14 common::{
15 factor_quartic_inner, solve_cubic, solve_itp_fallible, solve_quadratic,
16 GAUSS_LEGENDRE_COEFFS_16,
17 },
18 Affine, BezPath, CubicBez, Line, ParamCurve, ParamCurveArclen, ParamCurveNearest, Point, Vec2,
19};
20
21#[cfg(not(feature = "std"))]
22use crate::common::FloatFuncs;
23
24pub trait ParamCurveFit {
52 fn sample_pt_tangent(&self, t: f64, sign: f64) -> CurveFitSample;
61
62 fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2);
66
67 fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
79 let t0 = 0.5 * (range.start + range.end);
80 let dt = 0.5 * (range.end - range.start);
81 let (a, x, y) = GAUSS_LEGENDRE_COEFFS_16
82 .iter()
83 .map(|(wi, xi)| {
84 let t = t0 + xi * dt;
85 let (p, d) = self.sample_pt_deriv(t);
86 let a = wi * d.x * p.y;
87 let x = p.x * a;
88 let y = p.y * a;
89 (a, x, y)
90 })
91 .fold((0.0, 0.0, 0.0), |(a0, x0, y0), (a1, x1, y1)| {
92 (a0 + a1, x0 + x1, y0 + y1)
93 });
94 (a * dt, x * dt, y * dt)
95 }
96
97 fn break_cusp(&self, range: Range<f64>) -> Option<f64>;
115}
116
117pub struct CurveFitSample {
119 pub p: Point,
121 pub tangent: Vec2,
123}
124
125impl CurveFitSample {
126 fn intersect(&self, c: CubicBez) -> ArrayVec<f64, 3> {
130 let p1 = 3.0 * (c.p1 - c.p0);
131 let p2 = 3.0 * c.p2.to_vec2() - 6.0 * c.p1.to_vec2() + 3.0 * c.p0.to_vec2();
132 let p3 = (c.p3 - c.p0) - 3.0 * (c.p2 - c.p1);
133 let c0 = (c.p0 - self.p).dot(self.tangent);
134 let c1 = p1.dot(self.tangent);
135 let c2 = p2.dot(self.tangent);
136 let c3 = p3.dot(self.tangent);
137 solve_cubic(c0, c1, c2, c3)
138 .into_iter()
139 .filter(|t| (0.0..=1.0).contains(t))
140 .collect()
141 }
142}
143
144pub fn fit_to_bezpath(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
166 let mut path = BezPath::new();
167 fit_to_bezpath_rec(source, 0.0..1.0, accuracy, &mut path);
168 path
169}
170
171fn fit_to_bezpath_rec(
174 source: &impl ParamCurveFit,
175 range: Range<f64>,
176 accuracy: f64,
177 path: &mut BezPath,
178) {
179 let start = range.start;
180 let end = range.end;
181 let start_p = source.sample_pt_tangent(range.start, 1.0).p;
182 let end_p = source.sample_pt_tangent(range.end, -1.0).p;
183 if start_p.distance_squared(end_p) <= accuracy * accuracy {
184 if let Some((c, _)) = try_fit_line(source, accuracy, range, start_p, end_p) {
185 if path.is_empty() {
186 path.move_to(c.p0);
187 }
188 path.curve_to(c.p1, c.p2, c.p3);
189 return;
190 }
191 }
192 let t = if let Some(t) = source.break_cusp(start..end) {
193 t
194 } else if let Some((c, _)) = fit_to_cubic(source, start..end, accuracy) {
195 if path.is_empty() {
196 path.move_to(c.p0);
197 }
198 path.curve_to(c.p1, c.p2, c.p3);
199 return;
200 } else {
201 0.5 * (start + end)
204 };
205 if t == start || t == end {
206 let p1 = start_p.lerp(end_p, 1.0 / 3.0);
208 let p2 = end_p.lerp(start_p, 1.0 / 3.0);
209 if path.is_empty() {
210 path.move_to(start_p);
211 }
212 path.curve_to(p1, p2, end_p);
213 return;
214 }
215 fit_to_bezpath_rec(source, start..t, accuracy, path);
216 fit_to_bezpath_rec(source, t..end, accuracy, path);
217}
218
219const N_SAMPLE: usize = 20;
220
221struct CurveDist {
223 samples: ArrayVec<CurveFitSample, N_SAMPLE>,
224 arcparams: ArrayVec<f64, N_SAMPLE>,
225 range: Range<f64>,
226 spicy: bool,
229}
230
231impl CurveDist {
232 fn from_curve(source: &impl ParamCurveFit, range: Range<f64>) -> Self {
233 let step = (range.end - range.start) * (1.0 / (N_SAMPLE + 1) as f64);
234 let mut last_tan = None;
235 let mut spicy = false;
236 const SPICY_THRESH: f64 = 0.2;
237 let mut samples = ArrayVec::new();
238 for i in 0..N_SAMPLE + 2 {
239 let sample = source.sample_pt_tangent(range.start + i as f64 * step, 1.0);
240 if let Some(last_tan) = last_tan {
241 let cross = sample.tangent.cross(last_tan);
242 let dot = sample.tangent.dot(last_tan);
243 if cross.abs() > SPICY_THRESH * dot.abs() {
244 spicy = true;
245 }
246 }
247 last_tan = Some(sample.tangent);
248 if i > 0 && i < N_SAMPLE + 1 {
249 samples.push(sample);
250 }
251 }
252 CurveDist {
253 samples,
254 arcparams: ArrayVec::default(),
255 range,
256 spicy,
257 }
258 }
259
260 fn compute_arc_params(&mut self, source: &impl ParamCurveFit) {
261 const N_SUBSAMPLE: usize = 10;
262 let (start, end) = (self.range.start, self.range.end);
263 let dt = (end - start) * (1.0 / ((N_SAMPLE + 1) * N_SUBSAMPLE) as f64);
264 let mut arclen = 0.0;
265 for i in 0..N_SAMPLE + 1 {
266 for j in 0..N_SUBSAMPLE {
267 let t = start + dt * ((i * N_SUBSAMPLE + j) as f64 + 0.5);
268 let (_, deriv) = source.sample_pt_deriv(t);
269 arclen += deriv.hypot();
270 }
271 if i < N_SAMPLE {
272 self.arcparams.push(arclen);
273 }
274 }
275 let arclen_inv = arclen.recip();
276 for x in &mut self.arcparams {
277 *x *= arclen_inv;
278 }
279 }
280
281 fn eval_arc(&self, c: CubicBez, acc2: f64) -> Option<f64> {
283 const EPS: f64 = 1e-9;
285 let c_arclen = c.arclen(EPS);
286 let mut max_err2 = 0.0;
287 for (sample, s) in self.samples.iter().zip(&self.arcparams) {
288 let t = c.inv_arclen(c_arclen * s, EPS);
289 let err = sample.p.distance_squared(c.eval(t));
290 max_err2 = err.max(max_err2);
291 if max_err2 > acc2 {
292 return None;
293 }
294 }
295 Some(max_err2)
296 }
297
298 fn eval_ray(&self, c: CubicBez, acc2: f64) -> Option<f64> {
306 let mut max_err2 = 0.0;
307 for sample in &self.samples {
308 let mut best = acc2 + 1.0;
309 for t in sample.intersect(c) {
310 let err = sample.p.distance_squared(c.eval(t));
311 best = best.min(err);
312 }
313 max_err2 = best.max(max_err2);
314 if max_err2 > acc2 {
315 return None;
316 }
317 }
318 Some(max_err2)
319 }
320
321 fn eval_dist(&mut self, source: &impl ParamCurveFit, c: CubicBez, acc2: f64) -> Option<f64> {
322 let ray_dist = self.eval_ray(c, acc2)?;
324 if !self.spicy {
325 return Some(ray_dist);
326 }
327 if self.arcparams.is_empty() {
328 self.compute_arc_params(source);
329 }
330 self.eval_arc(c, acc2)
331 }
332}
333
334const D_PENALTY_ELBOW: f64 = 0.65;
345const D_PENALTY_SLOPE: f64 = 2.0;
346
347fn try_fit_line(
356 source: &impl ParamCurveFit,
357 accuracy: f64,
358 range: Range<f64>,
359 start: Point,
360 end: Point,
361) -> Option<(CubicBez, f64)> {
362 let acc2 = accuracy * accuracy;
363 let chord_l = Line::new(start, end);
364 const SHORT_N: usize = 7;
365 let mut max_err2 = 0.0;
366 let dt = (range.end - range.start) / (SHORT_N + 1) as f64;
367 for i in 0..SHORT_N {
368 let t = range.start + (i + 1) as f64 * dt;
369 let p = source.sample_pt_deriv(t).0;
370 let err2 = chord_l.nearest(p, accuracy).distance_sq;
371 if err2 > acc2 {
372 return None;
374 }
375 max_err2 = err2.max(max_err2);
376 }
377 let p1 = start.lerp(end, 1.0 / 3.0);
378 let p2 = end.lerp(start, 1.0 / 3.0);
379 let c = CubicBez::new(start, p1, p2, end);
380 Some((c, max_err2))
381}
382
383pub fn fit_to_cubic(
388 source: &impl ParamCurveFit,
389 range: Range<f64>,
390 accuracy: f64,
391) -> Option<(CubicBez, f64)> {
392 let start = source.sample_pt_tangent(range.start, 1.0);
393 let end = source.sample_pt_tangent(range.end, -1.0);
394 let d = end.p - start.p;
395 let chord2 = d.hypot2();
396 let acc2 = accuracy * accuracy;
397 if chord2 <= acc2 {
398 return try_fit_line(source, accuracy, range, start.p, end.p);
400 }
401 let th = d.atan2();
402 fn mod_2pi(th: f64) -> f64 {
403 let th_scaled = th * core::f64::consts::FRAC_1_PI * 0.5;
404 core::f64::consts::PI * 2.0 * (th_scaled - th_scaled.round())
405 }
406 let th0 = mod_2pi(start.tangent.atan2() - th);
407 let th1 = mod_2pi(th - end.tangent.atan2());
408
409 let (mut area, mut x, mut y) = source.moment_integrals(range.clone());
410 let (x0, y0) = (start.p.x, start.p.y);
411 let (dx, dy) = (d.x, d.y);
412 area -= dx * (y0 + 0.5 * dy);
414 let dy_3 = dy * (1. / 3.);
419 x -= dx * (x0 * y0 + 0.5 * (x0 * dy + y0 * dx) + dy_3 * dx);
420 y -= dx * (y0 * y0 + y0 * dy + dy_3 * dy);
421 x -= x0 * area;
423 y = 0.5 * y - y0 * area;
424 let moment = d.x * x + d.y * y;
426 let chord2_inv = chord2.recip();
431 let unit_area = area * chord2_inv;
432 let mx = moment * chord2_inv.powi(2);
433 let chord = chord2.sqrt();
436 let aff = Affine::translate(start.p.to_vec2()) * Affine::rotate(th) * Affine::scale(chord);
437 let mut curve_dist = CurveDist::from_curve(source, range);
438 let mut best_c = None;
439 let mut best_err2 = None;
440 for (cand, d0, d1) in cubic_fit(th0, th1, unit_area, mx) {
441 let c = aff * cand;
442 if let Some(err2) = curve_dist.eval_dist(source, c, acc2) {
443 fn scale_f(d: f64) -> f64 {
444 1.0 + (d - D_PENALTY_ELBOW).max(0.0) * D_PENALTY_SLOPE
445 }
446 let scale = scale_f(d0).max(scale_f(d1)).powi(2);
447 let err2 = err2 * scale;
448 if err2 < acc2 && best_err2.map(|best| err2 < best).unwrap_or(true) {
449 best_c = Some(c);
450 best_err2 = Some(err2);
451 }
452 }
453 }
454 match (best_c, best_err2) {
455 (Some(c), Some(err2)) => Some((c, err2)),
456 _ => None,
457 }
458}
459
460fn cubic_fit(th0: f64, th1: f64, area: f64, mx: f64) -> ArrayVec<(CubicBez, f64, f64), 4> {
462 let (s0, c0) = th0.sin_cos();
465 let (s1, c1) = th1.sin_cos();
466 let a4 = -9.
467 * c0
468 * (((2. * s1 * c1 * c0 + s0 * (2. * c1 * c1 - 1.)) * c0 - 2. * s1 * c1) * c0
469 - c1 * c1 * s0);
470 let a3 = 12.
471 * ((((c1 * (30. * area * c1 - s1) - 15. * area) * c0 + 2. * s0
472 - c1 * s0 * (c1 + 30. * area * s1))
473 * c0
474 + c1 * (s1 - 15. * area * c1))
475 * c0
476 - s0 * c1 * c1);
477 let a2 = 12.
478 * ((((70. * mx + 15. * area) * s1 * s1 + c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area))
479 * c0
480 - 5. * s0 * s1 * (3. * s1 - 4. * c1 * (7. * mx + area)))
481 * c0
482 - c1 * (9. * s1 - 70. * c1 * mx - 5. * c1 * area));
483 let a1 = 16.
484 * (((12. * s0 - 5. * c0 * (42. * mx - 17. * area)) * s1
485 - 70. * c1 * (3. * mx - area) * s0
486 - 75. * c0 * c1 * area * area)
487 * s1
488 - 75. * c1 * c1 * area * area * s0);
489 let a0 = 80. * s1 * (42. * s1 * mx - 25. * area * (s1 - c1 * area));
490 let mut roots = ArrayVec::<f64, 4>::new();
493 const EPS: f64 = 1e-12;
494 if a4.abs() > EPS {
495 let a = a3 / a4;
496 let b = a2 / a4;
497 let c = a1 / a4;
498 let d = a0 / a4;
499 if let Some(quads) = factor_quartic_inner(a, b, c, d, false) {
500 for (qc1, qc0) in quads {
501 let qroots = solve_quadratic(qc0, qc1, 1.0);
502 if qroots.is_empty() {
503 roots.push(-0.5 * qc1);
505 } else {
506 roots.extend(qroots);
507 }
508 }
509 }
510 } else if a3.abs() > EPS {
511 roots.extend(solve_cubic(a0, a1, a2, a3));
512 } else if a2.abs() > EPS || a1.abs() > EPS || a0.abs() > EPS {
513 roots.extend(solve_quadratic(a0, a1, a2));
514 } else {
515 return [(
516 CubicBez::new((0.0, 0.0), (1. / 3., 0.0), (2. / 3., 0.0), (1., 0.0)),
517 1f64 / 3.,
518 1f64 / 3.,
519 )]
520 .into_iter()
521 .collect();
522 }
523
524 let s01 = s0 * c1 + s1 * c0;
525 roots
526 .iter()
527 .filter_map(|&d0| {
528 let (d0, d1) = if d0 > 0.0 {
529 let d1 = (d0 * s0 - area * (10. / 3.)) / (0.5 * d0 * s01 - s1);
530 if d1 > 0.0 {
531 (d0, d1)
532 } else {
533 (s1 / s01, 0.0)
534 }
535 } else {
536 (0.0, s0 / s01)
537 };
538 if d0 >= 0.0 && d1 >= 0.0 {
540 Some((
541 CubicBez::new(
542 (0.0, 0.0),
543 (d0 * c0, d0 * s0),
544 (1.0 - d1 * c1, d1 * s1),
545 (1.0, 0.0),
546 ),
547 d0,
548 d1,
549 ))
550 } else {
551 None
552 }
553 })
554 .collect()
555}
556
557pub fn fit_to_bezpath_opt(source: &impl ParamCurveFit, accuracy: f64) -> BezPath {
569 let mut cusps = Vec::new();
570 let mut path = BezPath::new();
571 let mut t0 = 0.0;
572 loop {
573 let t1 = cusps.last().copied().unwrap_or(1.0);
574 match fit_to_bezpath_opt_inner(source, accuracy, t0..t1, &mut path) {
575 Some(t) => cusps.push(t),
576 None => match cusps.pop() {
577 Some(t) => t0 = t,
578 None => break,
579 },
580 }
581 }
582 path
583}
584
585fn fit_to_bezpath_opt_inner(
590 source: &impl ParamCurveFit,
591 accuracy: f64,
592 range: Range<f64>,
593 path: &mut BezPath,
594) -> Option<f64> {
595 if let Some(t) = source.break_cusp(range.clone()) {
596 return Some(t);
597 }
598 let err;
599 if let Some((c, err2)) = fit_to_cubic(source, range.clone(), accuracy) {
600 err = err2.sqrt();
601 if err < accuracy {
602 if range.start == 0.0 {
603 path.move_to(c.p0);
604 }
605 path.curve_to(c.p1, c.p2, c.p3);
606 return None;
607 }
608 } else {
609 err = 2.0 * accuracy;
610 }
611 let (mut t0, t1) = (range.start, range.end);
612 let mut n = 0;
613 let last_err;
614 loop {
615 n += 1;
616 match fit_opt_segment(source, accuracy, t0..t1) {
617 FitResult::ParamVal(t) => t0 = t,
618 FitResult::SegmentError(err) => {
619 last_err = err;
620 break;
621 }
622 FitResult::CuspFound(t) => return Some(t),
623 }
624 }
625 t0 = range.start;
626 const EPS: f64 = 1e-9;
627 let f = |x| fit_opt_err_delta(source, x, accuracy, t0..t1, n);
628 let k1 = 0.2 / accuracy;
629 let ya = -err;
630 let yb = accuracy - last_err;
631 let (_, x) = match solve_itp_fallible(f, 0.0, accuracy, EPS, 1, k1, ya, yb) {
632 Ok(x) => x,
633 Err(t) => return Some(t),
634 };
635 let path_len = path.elements().len();
637 for i in 0..n {
638 let t1 = if i < n - 1 {
639 match fit_opt_segment(source, x, t0..range.end) {
640 FitResult::ParamVal(t1) => t1,
641 FitResult::SegmentError(_) => range.end,
642 FitResult::CuspFound(t) => {
643 path.truncate(path_len);
644 return Some(t);
645 }
646 }
647 } else {
648 range.end
649 };
650 let (c, _) = fit_to_cubic(source, t0..t1, accuracy).unwrap();
651 if i == 0 && range.start == 0.0 {
652 path.move_to(c.p0);
653 }
654 path.curve_to(c.p1, c.p2, c.p3);
655 t0 = t1;
656 if t0 == range.end {
657 break;
659 }
660 }
661 None
662}
663
664fn measure_one_seg(source: &impl ParamCurveFit, range: Range<f64>, limit: f64) -> Option<f64> {
665 fit_to_cubic(source, range, limit).map(|(_, err2)| err2.sqrt())
666}
667
668enum FitResult {
669 ParamVal(f64),
671 SegmentError(f64),
673 CuspFound(f64),
675}
676
677fn fit_opt_segment(source: &impl ParamCurveFit, accuracy: f64, range: Range<f64>) -> FitResult {
678 if let Some(t) = source.break_cusp(range.clone()) {
679 return FitResult::CuspFound(t);
680 }
681 let missing_err = accuracy * 2.0;
682 let err = measure_one_seg(source, range.clone(), accuracy).unwrap_or(missing_err);
683 if err <= accuracy {
684 return FitResult::SegmentError(err);
685 }
686 let (t0, t1) = (range.start, range.end);
687 let f = |x| {
688 if let Some(t) = source.break_cusp(range.clone()) {
689 return Err(t);
690 }
691 let err = measure_one_seg(source, t0..x, accuracy).unwrap_or(missing_err);
692 Ok(err - accuracy)
693 };
694 const EPS: f64 = 1e-9;
695 let k1 = 2.0 / (t1 - t0);
696 match solve_itp_fallible(f, t0, t1, EPS, 1, k1, -accuracy, err - accuracy) {
697 Ok((t1, _)) => FitResult::ParamVal(t1),
698 Err(t) => FitResult::CuspFound(t),
699 }
700}
701
702fn fit_opt_err_delta(
705 source: &impl ParamCurveFit,
706 accuracy: f64,
707 limit: f64,
708 range: Range<f64>,
709 n: usize,
710) -> Result<f64, f64> {
711 let (mut t0, t1) = (range.start, range.end);
712 for _ in 0..n - 1 {
713 t0 = match fit_opt_segment(source, accuracy, t0..t1) {
714 FitResult::ParamVal(t0) => t0,
715 FitResult::SegmentError(_) => return Ok(accuracy),
718 FitResult::CuspFound(t) => return Err(t),
719 }
720 }
721 let err = measure_one_seg(source, t0..t1, limit).unwrap_or(accuracy * 2.0);
722 Ok(accuracy - err)
723}