palette/
chromatic_adaptation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! Convert colors from one reference white point to another
//!
//! Chromatic adaptation is the human visual system’s ability to adjust to
//! changes in illumination in order to preserve the appearance of object
//! colors. It is responsible for the stable appearance of object colours
//! despite the wide variation of light which might be reflected from an object
//! and observed by our eyes.
//!
//! This library provides three methods for chromatic adaptation Bradford (which
//! is the default), VonKries and XyzScaling
//!
//! ```
//! use palette::Xyz;
//! use palette::white_point::{A, C};
//! use palette::chromatic_adaptation::AdaptInto;
//!
//!
//! let a = Xyz::<A, f32>::new(0.315756, 0.162732, 0.015905);
//!
//! //Will convert Xyz<A, f32> to Xyz<C, f32> using Bradford chromatic adaptation
//! let c: Xyz<C, f32> = a.adapt_into();
//!
//! //Should print {x: 0.257963, y: 0.139776,z: 0.058825}
//! println!("{:?}", c)
//! ```

use crate::{
    convert::{FromColorUnclamped, IntoColorUnclamped},
    matrix::{multiply_3x3, multiply_xyz, Mat3},
    num::{Arithmetics, Real, Zero},
    white_point::{Any, WhitePoint},
    Xyz,
};

/// Chromatic adaptation methods implemented in the library
pub enum Method {
    /// Bradford chromatic adaptation method
    Bradford,
    /// VonKries chromatic adaptation method
    VonKries,
    /// XyzScaling chromatic adaptation method
    XyzScaling,
}

/// Holds the matrix coefficients for the chromatic adaptation methods
pub struct ConeResponseMatrices<T> {
    ///3x3 matrix for the cone response domains
    pub ma: Mat3<T>,
    ///3x3 matrix for the inverse of the cone response domains
    pub inv_ma: Mat3<T>,
}

/// Generates a conversion matrix to convert the Xyz tristimulus values from
/// one illuminant to another (`source_wp` to `destination_wp`)
pub trait TransformMatrix<T>
where
    T: Zero + Arithmetics + Clone,
{
    /// Get the cone response functions for the chromatic adaptation method
    #[must_use]
    fn get_cone_response(&self) -> ConeResponseMatrices<T>;

    /// Generates a 3x3 transformation matrix to convert color from one
    /// reference white point to another with the given cone_response
    #[must_use]
    fn generate_transform_matrix(
        &self,
        source_wp: Xyz<Any, T>,
        destination_wp: Xyz<Any, T>,
    ) -> Mat3<T> {
        let adapt = self.get_cone_response();

        let resp_src = multiply_xyz(adapt.ma.clone(), source_wp);
        let resp_dst = multiply_xyz(adapt.ma.clone(), destination_wp);

        #[rustfmt::skip]
        let resp = [
            resp_dst.x / resp_src.x, T::zero(), T::zero(),
            T::zero(), resp_dst.y / resp_src.y, T::zero(),
            T::zero(), T::zero(), resp_dst.z / resp_src.z,
        ];

        let tmp = multiply_3x3(resp, adapt.ma);
        multiply_3x3(adapt.inv_ma, tmp)
    }
}

impl<T> TransformMatrix<T> for Method
where
    T: Real + Zero + Arithmetics + Clone,
{
    #[rustfmt::skip]
    #[inline]
    fn get_cone_response(&self) -> ConeResponseMatrices<T> {
        match *self {
             Method::Bradford => {
                ConeResponseMatrices::<T> {
                    ma: [
                        T::from_f64(0.8951000), T::from_f64(0.2664000), T::from_f64(-0.1614000),
                        T::from_f64(-0.7502000), T::from_f64(1.7135000), T::from_f64(0.0367000),
                        T::from_f64(0.0389000), T::from_f64(-0.0685000), T::from_f64(1.0296000)
                    ],
                    inv_ma: [
                        T::from_f64(0.9869929), T::from_f64(-0.1470543), T::from_f64(0.1599627),
                        T::from_f64(0.4323053), T::from_f64(0.5183603), T::from_f64(0.0492912),
                        T::from_f64(-0.0085287), T::from_f64(0.0400428), T::from_f64(0.9684867)
                    ],
                }
            }
             Method::VonKries => {
                ConeResponseMatrices::<T> {
                    ma: [
                        T::from_f64(0.4002400), T::from_f64(0.7076000), T::from_f64(-0.0808100),
                        T::from_f64(-0.2263000), T::from_f64(1.1653200), T::from_f64(0.0457000),
                        T::from_f64(0.0000000), T::from_f64(0.0000000), T::from_f64(0.9182200)
                    ],
                    inv_ma: [
                        T::from_f64(1.8599364), T::from_f64(-1.1293816), T::from_f64(0.2198974),
                        T::from_f64(0.3611914), T::from_f64(0.6388125), T::from_f64(-0.0000064),
                        T::from_f64(0.0000000), T::from_f64(0.0000000), T::from_f64(1.0890636)
                    ],
                }
            }
             Method::XyzScaling => {
                ConeResponseMatrices::<T> {
                    ma: [
                        T::from_f64(1.0000000), T::from_f64(0.0000000), T::from_f64(0.0000000),
                        T::from_f64(0.0000000), T::from_f64(1.0000000), T::from_f64(0.0000000),
                        T::from_f64(0.0000000), T::from_f64(0.0000000), T::from_f64(1.0000000)
                    ],
                    inv_ma: [
                        T::from_f64(1.0000000), T::from_f64(0.0000000), T::from_f64(0.0000000),
                        T::from_f64(0.0000000), T::from_f64(1.0000000), T::from_f64(0.0000000),
                        T::from_f64(0.0000000), T::from_f64(0.0000000), T::from_f64(1.0000000)
                    ],
                }
            }
        }
    }
}

/// Trait to convert color from one reference white point to another
///
/// Converts a color from the source white point (Swp) to the destination white
/// point (Dwp). Uses the bradford method for conversion by default.
pub trait AdaptFrom<S, Swp, Dwp, T>: Sized
where
    T: Real + Zero + Arithmetics + Clone,
    Swp: WhitePoint<T>,
    Dwp: WhitePoint<T>,
{
    /// Convert the source color to the destination color using the bradford
    /// method by default.
    #[must_use]
    #[inline]
    fn adapt_from(color: S) -> Self {
        Self::adapt_from_using(color, Method::Bradford)
    }
    /// Convert the source color to the destination color using the specified
    /// method.
    #[must_use]
    fn adapt_from_using<M: TransformMatrix<T>>(color: S, method: M) -> Self;
}

impl<S, D, Swp, Dwp, T> AdaptFrom<S, Swp, Dwp, T> for D
where
    T: Real + Zero + Arithmetics + Clone,
    Swp: WhitePoint<T>,
    Dwp: WhitePoint<T>,
    S: IntoColorUnclamped<Xyz<Swp, T>>,
    D: FromColorUnclamped<Xyz<Dwp, T>>,
{
    #[inline]
    fn adapt_from_using<M: TransformMatrix<T>>(color: S, method: M) -> D {
        let src_xyz = color.into_color_unclamped().with_white_point();
        let transform_matrix = method.generate_transform_matrix(Swp::get_xyz(), Dwp::get_xyz());
        let dst_xyz = multiply_xyz(transform_matrix, src_xyz);
        D::from_color_unclamped(dst_xyz.with_white_point())
    }
}

/// Trait to convert color with one reference white point into another
///
/// Converts a color with the source white point (Swp) into the destination
/// white point (Dwp). Uses the bradford method for conversion by default.
pub trait AdaptInto<D, Swp, Dwp, T>: Sized
where
    T: Real + Zero + Arithmetics + Clone,
    Swp: WhitePoint<T>,
    Dwp: WhitePoint<T>,
{
    /// Convert the source color to the destination color using the bradford
    /// method by default.
    #[must_use]
    #[inline]
    fn adapt_into(self) -> D {
        self.adapt_into_using(Method::Bradford)
    }
    /// Convert the source color to the destination color using the specified
    /// method.
    #[must_use]
    fn adapt_into_using<M: TransformMatrix<T>>(self, method: M) -> D;
}

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where
    T: Real + Zero + Arithmetics + Clone,
    Swp: WhitePoint<T>,
    Dwp: WhitePoint<T>,
    D: AdaptFrom<S, Swp, Dwp, T>,
{
    #[inline]
    fn adapt_into_using<M: TransformMatrix<T>>(self, method: M) -> D {
        D::adapt_from_using(self, method)
    }
}

#[cfg(feature = "approx")]
#[cfg(test)]
mod test {
    use super::{AdaptFrom, AdaptInto, Method, TransformMatrix};
    use crate::white_point::{WhitePoint, A, C, D50, D65};
    use crate::Xyz;

    #[test]
    fn d65_to_d50_matrix_xyz_scaling() {
        let expected = [
            1.0144665, 0.0000000, 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000,
            0.7578869,
        ];
        let xyz_scaling = Method::XyzScaling;
        let computed = xyz_scaling.generate_transform_matrix(D65::get_xyz(), D50::get_xyz());
        for (e, c) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(e, c, epsilon = 0.0001)
        }
    }
    #[test]
    fn d65_to_d50_matrix_von_kries() {
        let expected = [
            1.0160803, 0.0552297, -0.0521326, 0.0060666, 0.9955661, -0.0012235, 0.0000000,
            0.0000000, 0.7578869,
        ];
        let von_kries = Method::VonKries;
        let computed = von_kries.generate_transform_matrix(D65::get_xyz(), D50::get_xyz());
        for (e, c) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(e, c, epsilon = 0.0001)
        }
    }
    #[test]
    fn d65_to_d50_matrix_bradford() {
        let expected = [
            1.0478112, 0.0228866, -0.0501270, 0.0295424, 0.9904844, -0.0170491, -0.0092345,
            0.0150436, 0.7521316,
        ];
        let bradford = Method::Bradford;
        let computed = bradford.generate_transform_matrix(D65::get_xyz(), D50::get_xyz());
        for (e, c) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(e, c, epsilon = 0.0001)
        }
    }

    #[test]
    fn chromatic_adaptation_from_a_to_c() {
        let input_a = Xyz::<A, f32>::new(0.315756, 0.162732, 0.015905);

        let expected_bradford = Xyz::<C, f32>::new(0.257963, 0.139776, 0.058825);
        let expected_vonkries = Xyz::<C, f32>::new(0.268446, 0.159139, 0.052843);
        let expected_xyz_scaling = Xyz::<C, f32>::new(0.281868, 0.162732, 0.052844);

        let computed_bradford: Xyz<C, f32> = Xyz::adapt_from(input_a);
        assert_relative_eq!(expected_bradford, computed_bradford, epsilon = 0.0001);

        let computed_vonkries: Xyz<C, f32> = Xyz::adapt_from_using(input_a, Method::VonKries);
        assert_relative_eq!(expected_vonkries, computed_vonkries, epsilon = 0.0001);

        let computed_xyz_scaling: Xyz<C, _> = Xyz::adapt_from_using(input_a, Method::XyzScaling);
        assert_relative_eq!(expected_xyz_scaling, computed_xyz_scaling, epsilon = 0.0001);
    }

    #[test]
    fn chromatic_adaptation_into_a_to_c() {
        let input_a = Xyz::<A, f32>::new(0.315756, 0.162732, 0.015905);

        let expected_bradford = Xyz::<C, f32>::new(0.257963, 0.139776, 0.058825);
        let expected_vonkries = Xyz::<C, f32>::new(0.268446, 0.159139, 0.052843);
        let expected_xyz_scaling = Xyz::<C, f32>::new(0.281868, 0.162732, 0.052844);

        let computed_bradford: Xyz<C, f32> = input_a.adapt_into();
        assert_relative_eq!(expected_bradford, computed_bradford, epsilon = 0.0001);

        let computed_vonkries: Xyz<C, f32> = input_a.adapt_into_using(Method::VonKries);
        assert_relative_eq!(expected_vonkries, computed_vonkries, epsilon = 0.0001);

        let computed_xyz_scaling: Xyz<C, _> = input_a.adapt_into_using(Method::XyzScaling);
        assert_relative_eq!(expected_xyz_scaling, computed_xyz_scaling, epsilon = 0.0001);
    }
}