1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use alloc::vec;
use alloc::vec::Vec;
use core::fmt;
use core::iter::FromIterator;
use core::ops::Deref;

use super::FlexZeroSlice;
use super::FlexZeroVec;

/// The fully-owned variant of [`FlexZeroVec`]. Contains all mutation methods.
// Safety invariant: the inner bytes must deref to a valid `FlexZeroSlice`
#[derive(Clone, PartialEq, Eq)]
pub struct FlexZeroVecOwned(Vec<u8>);

impl FlexZeroVecOwned {
    /// Creates a new [`FlexZeroVecOwned`] with zero elements.
    pub fn new_empty() -> Self {
        Self(vec![1])
    }

    /// Creates a [`FlexZeroVecOwned`] from a [`FlexZeroSlice`].
    pub fn from_slice(other: &FlexZeroSlice) -> FlexZeroVecOwned {
        // safety: the bytes originate from a valid FlexZeroSlice
        Self(other.as_bytes().to_vec())
    }

    /// Obtains this [`FlexZeroVecOwned`] as a [`FlexZeroSlice`].
    pub fn as_slice(&self) -> &FlexZeroSlice {
        let slice: &[u8] = &self.0;
        unsafe {
            // safety: the slice is known to come from a valid parsed FlexZeroSlice
            FlexZeroSlice::from_byte_slice_unchecked(slice)
        }
    }

    /// Mutably obtains this `FlexZeroVecOwned` as a [`FlexZeroSlice`].
    pub(crate) fn as_mut_slice(&mut self) -> &mut FlexZeroSlice {
        let slice: &mut [u8] = &mut self.0;
        unsafe {
            // safety: the slice is known to come from a valid parsed FlexZeroSlice
            FlexZeroSlice::from_byte_slice_mut_unchecked(slice)
        }
    }

    /// Converts this `FlexZeroVecOwned` into a [`FlexZeroVec::Owned`].
    #[inline]
    pub fn into_flexzerovec(self) -> FlexZeroVec<'static> {
        FlexZeroVec::Owned(self)
    }

    /// Clears all values out of this `FlexZeroVecOwned`.
    #[inline]
    pub fn clear(&mut self) {
        *self = Self::new_empty()
    }

    /// Appends an item to the end of the vector.
    ///
    /// # Panics
    ///
    /// Panics if inserting the element would require allocating more than `usize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let mut zv: FlexZeroVec = [22, 44, 66].iter().copied().collect();
    /// zv.to_mut().push(33);
    /// assert_eq!(zv.to_vec(), vec![22, 44, 66, 33]);
    /// ```
    pub fn push(&mut self, item: usize) {
        let insert_info = self.get_insert_info(item);
        self.0.resize(insert_info.new_bytes_len, 0);
        let insert_index = insert_info.new_count - 1;
        self.as_mut_slice().insert_impl(insert_info, insert_index);
    }

    /// Inserts an element into the middle of the vector.
    ///
    /// Caution: Both arguments to this function are of type `usize`. Please be careful to pass
    /// the index first followed by the value second.
    ///
    /// # Panics
    ///
    /// Panics if `index > len`.
    ///
    /// Panics if inserting the element would require allocating more than `usize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let mut zv: FlexZeroVec = [22, 44, 66].iter().copied().collect();
    /// zv.to_mut().insert(2, 33);
    /// assert_eq!(zv.to_vec(), vec![22, 44, 33, 66]);
    /// ```
    pub fn insert(&mut self, index: usize, item: usize) {
        #[allow(clippy::panic)] // panic is documented in function contract
        if index > self.len() {
            panic!("index {} out of range {}", index, self.len());
        }
        let insert_info = self.get_insert_info(item);
        self.0.resize(insert_info.new_bytes_len, 0);
        self.as_mut_slice().insert_impl(insert_info, index);
    }

    /// Inserts an element into an ascending sorted vector
    /// at a position that keeps the vector sorted.
    ///
    /// # Panics
    ///
    /// Panics if inserting the element would require allocating more than `usize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVecOwned;
    ///
    /// let mut fzv = FlexZeroVecOwned::new_empty();
    /// fzv.insert_sorted(10);
    /// fzv.insert_sorted(5);
    /// fzv.insert_sorted(8);
    ///
    /// assert!(Iterator::eq(fzv.iter(), [5, 8, 10].iter().copied()));
    /// ```
    pub fn insert_sorted(&mut self, item: usize) {
        let index = match self.binary_search(item) {
            Ok(i) => i,
            Err(i) => i,
        };
        let insert_info = self.get_insert_info(item);
        self.0.resize(insert_info.new_bytes_len, 0);
        self.as_mut_slice().insert_impl(insert_info, index);
    }

    /// Removes and returns the element at the specified index.
    ///
    /// # Panics
    ///
    /// Panics if `index >= len`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let mut zv: FlexZeroVec = [22, 44, 66].iter().copied().collect();
    /// let removed_item = zv.to_mut().remove(1);
    /// assert_eq!(44, removed_item);
    /// assert_eq!(zv.to_vec(), vec![22, 66]);
    /// ```
    pub fn remove(&mut self, index: usize) -> usize {
        #[allow(clippy::panic)] // panic is documented in function contract
        if index >= self.len() {
            panic!("index {} out of range {}", index, self.len());
        }
        let remove_info = self.get_remove_info(index);
        // Safety: `remove_index` is a valid index
        let item = unsafe { self.get_unchecked(remove_info.remove_index) };
        let new_bytes_len = remove_info.new_bytes_len;
        self.as_mut_slice().remove_impl(remove_info);
        self.0.truncate(new_bytes_len);
        item
    }

    /// Removes and returns the last element from an ascending sorted vector.
    ///
    /// If the vector is not sorted, use [`FlexZeroVecOwned::remove()`] instead. Calling this
    /// function would leave the FlexZeroVec in a safe, well-defined state; however, information
    /// may be lost and/or the equality invariant might not hold.
    ///
    /// # Panics
    ///
    /// Panics if `self.is_empty()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let mut zv: FlexZeroVec = [22, 44, 66].iter().copied().collect();
    /// let popped_item = zv.to_mut().pop_sorted();
    /// assert_eq!(66, popped_item);
    /// assert_eq!(zv.to_vec(), vec![22, 44]);
    /// ```
    ///
    /// Calling this function on a non-ascending vector could cause surprising results:
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let mut zv1: FlexZeroVec = [444, 222, 111].iter().copied().collect();
    /// let popped_item = zv1.to_mut().pop_sorted();
    /// assert_eq!(111, popped_item);
    ///
    /// // Oops!
    /// assert_eq!(zv1.to_vec(), vec![188, 222]);
    /// ```
    pub fn pop_sorted(&mut self) -> usize {
        #[allow(clippy::panic)] // panic is documented in function contract
        if self.is_empty() {
            panic!("cannot pop from an empty vector");
        }
        let remove_info = self.get_sorted_pop_info();
        // Safety: `remove_index` is a valid index
        let item = unsafe { self.get_unchecked(remove_info.remove_index) };
        let new_bytes_len = remove_info.new_bytes_len;
        self.as_mut_slice().remove_impl(remove_info);
        self.0.truncate(new_bytes_len);
        item
    }
}

impl Deref for FlexZeroVecOwned {
    type Target = FlexZeroSlice;
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl fmt::Debug for FlexZeroVecOwned {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self.to_vec())
    }
}

impl From<&FlexZeroSlice> for FlexZeroVecOwned {
    fn from(other: &FlexZeroSlice) -> Self {
        Self::from_slice(other)
    }
}

impl FromIterator<usize> for FlexZeroVecOwned {
    /// Creates a [`FlexZeroVecOwned`] from an iterator of `usize`.
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = usize>,
    {
        let mut result = FlexZeroVecOwned::new_empty();
        for item in iter {
            result.push(item);
        }
        result
    }
}

#[cfg(test)]
mod test {
    use super::*;

    fn check_contents(fzv: &FlexZeroSlice, expected: &[usize]) {
        assert_eq!(fzv.len(), expected.len(), "len: {fzv:?} != {expected:?}");
        assert_eq!(
            fzv.is_empty(),
            expected.is_empty(),
            "is_empty: {fzv:?} != {expected:?}"
        );
        assert_eq!(
            fzv.first(),
            expected.first().copied(),
            "first: {fzv:?} != {expected:?}"
        );
        assert_eq!(
            fzv.last(),
            expected.last().copied(),
            "last:  {fzv:?} != {expected:?}"
        );
        for i in 0..(expected.len() + 1) {
            assert_eq!(
                fzv.get(i),
                expected.get(i).copied(),
                "@{i}: {fzv:?} != {expected:?}"
            );
        }
    }

    #[test]
    fn test_basic() {
        let mut fzv = FlexZeroVecOwned::new_empty();
        assert_eq!(fzv.get_width(), 1);
        check_contents(&fzv, &[]);

        fzv.push(42);
        assert_eq!(fzv.get_width(), 1);
        check_contents(&fzv, &[42]);

        fzv.push(77);
        assert_eq!(fzv.get_width(), 1);
        check_contents(&fzv, &[42, 77]);

        // Scale up
        fzv.push(300);
        assert_eq!(fzv.get_width(), 2);
        check_contents(&fzv, &[42, 77, 300]);

        // Does not need to be sorted
        fzv.insert(1, 325);
        assert_eq!(fzv.get_width(), 2);
        check_contents(&fzv, &[42, 325, 77, 300]);

        fzv.remove(3);
        assert_eq!(fzv.get_width(), 2);
        check_contents(&fzv, &[42, 325, 77]);

        // Scale down
        fzv.remove(1);
        assert_eq!(fzv.get_width(), 1);
        check_contents(&fzv, &[42, 77]);
    }

    #[test]
    fn test_build_sorted() {
        let nums: &[usize] = &[0, 50, 0, 77, 831, 29, 89182, 931, 0, 77, 712381];
        let mut fzv = FlexZeroVecOwned::new_empty();

        for num in nums {
            fzv.insert_sorted(*num);
        }
        assert_eq!(fzv.get_width(), 3);
        check_contents(&fzv, &[0, 0, 0, 29, 50, 77, 77, 831, 931, 89182, 712381]);

        for num in nums {
            let index = fzv.binary_search(*num).unwrap();
            fzv.remove(index);
        }
        assert_eq!(fzv.get_width(), 1);
        check_contents(&fzv, &[]);
    }
}