palette/
ok_utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//! Traits and functions used in Ok* color spaces

#[cfg(feature = "approx")]
#[cfg(test)]
use crate::{angle::RealAngle, num::Trigonometry, OklabHue};

use crate::{
    convert::IntoColorUnclamped,
    num::{Arithmetics, Cbrt, MinMax, One, Powi, Real, Sqrt, Zero},
    HasBoolMask, LinSrgb, Oklab,
};

/// Finds intersection of the line defined by
///
/// L = l0 * (1 - t) + t * l1;
///
/// C = t * c1;
///
/// a and b must be normalized so a² + b² == 1
fn find_gamut_intersection<T>(a: T, b: T, l1: T, c1: T, l0: T, cusp: LC<T>) -> T
where
    T: Real + One + Zero + Arithmetics + MinMax + HasBoolMask<Mask = bool> + PartialOrd + Clone,
{
    // Find the intersection for upper and lower half separately
    if ((l1.clone() - &l0) * &cusp.chroma - (cusp.lightness.clone() - &l0) * &c1) <= T::zero() {
        // Lower half

        cusp.chroma.clone() * &l0 / (c1 * cusp.lightness + cusp.chroma * (l0 - l1))
    } else {
        // Upper half

        // First intersect with triangle
        let t = cusp.chroma.clone() * (l0.clone() - T::one())
            / (c1.clone() * (cusp.lightness - T::one()) + cusp.chroma * (l0.clone() - &l1));

        // Then one step Halley's method
        {
            let dl = l1.clone() - &l0;
            let dc = c1.clone();

            let k_l = T::from_f64(0.3963377774) * &a + T::from_f64(0.2158037573) * &b;
            let k_m = -T::from_f64(0.1055613458) * &a - T::from_f64(0.0638541728) * &b;
            let k_s = -T::from_f64(0.0894841775) * a - T::from_f64(1.2914855480) * b;

            let l_dt = dl.clone() + dc.clone() * &k_l;
            let m_dt = dl.clone() + dc.clone() * &k_m;
            let s_dt = dl + dc * &k_s;

            // If higher accuracy is required, 2 or 3 iterations of the following block can be used:
            {
                let lightness = l0 * (T::one() - &t) + t.clone() * l1;
                let chroma = t.clone() * c1;

                let l_ = lightness.clone() + chroma.clone() * k_l;
                let m_ = lightness.clone() + chroma.clone() * k_m;
                let s_ = lightness + chroma * k_s;

                let l = l_.clone() * &l_ * &l_;
                let m = m_.clone() * &m_ * &m_;
                let s = s_.clone() * &s_ * &s_;

                let ldt = T::from_f64(3.0) * &l_dt * &l_ * &l_;
                let mdt = T::from_f64(3.0) * &m_dt * &m_ * &m_;
                let sdt = T::from_f64(3.0) * &s_dt * &s_ * &s_;

                let ldt2 = T::from_f64(6.0) * &l_dt * l_dt * l_;
                let mdt2 = T::from_f64(6.0) * &m_dt * m_dt * m_;
                let sdt2 = T::from_f64(6.0) * &s_dt * s_dt * s_;

                let r = T::from_f64(4.0767416621) * &l - T::from_f64(3.3077115913) * &m
                    + T::from_f64(0.2309699292) * &s
                    - T::one();
                let r1 = T::from_f64(4.0767416621) * &ldt - T::from_f64(3.3077115913) * &mdt
                    + T::from_f64(0.2309699292) * &sdt;
                let r2 = T::from_f64(4.0767416621) * &ldt2 - T::from_f64(3.3077115913) * &mdt2
                    + T::from_f64(0.2309699292) * &sdt2;

                let u_r = r1.clone() / (r1.clone() * r1 - T::from_f64(0.5) * &r * r2);
                let mut t_r = -r * &u_r;

                let g = -T::from_f64(1.2684380046) * &l + T::from_f64(2.6097574011) * &m
                    - T::from_f64(0.3413193965) * &s
                    - T::one();
                let g1 = -T::from_f64(1.2684380046) * &ldt + T::from_f64(2.6097574011) * &mdt
                    - T::from_f64(0.3413193965) * &sdt;
                let g2 = -T::from_f64(1.2684380046) * &ldt2 + T::from_f64(2.6097574011) * &mdt2
                    - T::from_f64(0.3413193965) * &sdt2;

                let u_g = g1.clone() / (g1.clone() * g1 - T::from_f64(0.5) * &g * g2);
                let mut t_g = -g * &u_g;

                let b = -T::from_f64(0.0041960863) * l - T::from_f64(0.7034186147) * m
                    + T::from_f64(1.7076147010) * s
                    - T::one();
                let b1 = -T::from_f64(0.0041960863) * ldt - T::from_f64(0.7034186147) * mdt
                    + T::from_f64(1.7076147010) * sdt;
                let b2 = -T::from_f64(0.0041960863) * ldt2 - T::from_f64(0.7034186147) * mdt2
                    + T::from_f64(1.7076147010) * sdt2;

                let u_b = b1.clone() / (b1.clone() * b1 - T::from_f64(0.5) * &b * b2);
                let mut t_b = -b * &u_b;

                // flt_max really is a constant, but cannot be defined as one due to the T::from_f64 function
                let flt_max = T::from_f64(10e5);

                t_r = if u_r >= T::zero() {
                    t_r
                } else {
                    flt_max.clone()
                };
                t_g = if u_g >= T::zero() {
                    t_g
                } else {
                    flt_max.clone()
                };
                t_b = if u_b >= T::zero() { t_b } else { flt_max };

                t + T::min(t_r, T::min(t_g, t_b))
            }
        }
    }
}

pub struct ChromaValues<T> {
    pub zero: T,
    pub mid: T,
    pub max: T,
}

impl<T> ChromaValues<T>
where
    T: Real
        + One
        + Zero
        + Arithmetics
        + MinMax
        + Cbrt
        + Sqrt
        + Powi
        + Clone
        + HasBoolMask<Mask = bool>
        + PartialOrd,
    Oklab<T>: IntoColorUnclamped<LinSrgb<T>>,
{
    // Corresponds to `get_Cs` in the reference implementation. Assumes that
    // `lightness != 1.0` and `lightness != 0.0`.
    pub fn from_normalized(lightness: T, a_: T, b_: T) -> Self {
        let cusp = LC::find_cusp(a_.clone(), b_.clone());

        let max_chroma = find_gamut_intersection(
            a_.clone(),
            b_.clone(),
            lightness.clone(),
            T::one(),
            lightness.clone(),
            cusp.clone(),
        );
        let st_max = ST::from(cusp);

        // Scale factor to compensate for the curved part of gamut shape:
        let k = max_chroma.clone()
            / T::min(
                lightness.clone() * st_max.s,
                (T::one() - &lightness) * st_max.t,
            );

        let c_mid = {
            let st_mid = ST::mid(a_, b_);

            // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
            let c_a = lightness.clone() * st_mid.s;
            let c_b = (T::one() - &lightness) * st_mid.t;
            T::from_f64(0.9)
                * k
                * T::sqrt(T::sqrt(
                    T::one()
                        / (T::one() / (c_a.clone() * &c_a * &c_a * &c_a)
                            + T::one() / (c_b.clone() * &c_b * &c_b * &c_b)),
                ))
        };

        let c_0 = {
            // for C_0, the shape is independent of hue, so ST are constant.
            // Values picked to roughly be the average values of ST.
            let c_a = lightness.clone() * T::from_f64(0.4);
            let c_b = (T::one() - lightness) * T::from_f64(0.8);

            // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
            T::sqrt(T::one() / (T::one() / (c_a.clone() * c_a) + T::one() / (c_b.clone() * c_b)))
        };
        Self {
            zero: c_0,
            mid: c_mid,
            max: max_chroma,
        }
    }
}

/// A `lightness`-`chroma` representation of a point in the `sRGB` gamut for a fixed hue.
///
/// Gamut is the range of representable colors of a color space. In this case the
/// `sRGB` color space.
///
/// Only together are `lightness` and `chroma` guaranteed to be inside the `sRGB` gamut.
/// While a color with lower `chroma` will  always stay in the gamut, a color of raised
/// *and lowered* lightness might move the point outside the gamut.
///
///# See
/// [LC diagram samples](https://bottosson.github.io/posts/gamutclipping/#gamut-clipping)
#[derive(Debug, Copy, Clone)]
pub(crate) struct LC<T> {
    /// The lightness of the color. 0 corresponds to black. 1 corresponds to white
    pub lightness: T,
    /// The chroma of the color. 0 corresponds to totally desaturated (white, grey or black).
    /// Larger values correspond to colorful values.
    ///
    ///Note: the maximum representable value depends on the lightness and the hue.
    pub chroma: T,
}

/// The number of iterations used for optimizing the result of [`LC::max_saturation`].
///
/// Must match [`MAX_SRGB_SATURATION_INACCURACY`]
pub(crate) const MAX_SRGB_SATURATION_SEARCH_MAX_ITER: usize = 1;
/// The expected inaccuracy of the result of [`LC::max_saturation`], optimized with
/// [`MAX_SRGB_SATURATION_SEARCH_MAX_ITER`] iterations
pub(crate) const MAX_SRGB_SATURATION_INACCURACY: f64 = 1e-6;

impl<T> LC<T>
where
    T: Real + One + Arithmetics + Powi + HasBoolMask<Mask = bool> + PartialOrd + Clone,
{
    /// Returns the cusp of the geometrical shape of representable `sRGB` colors for
    /// normalized `a` and `b` values of an `OKlabHue`, where "normalized" means, `a² + b² == 1`.
    ///
    /// The cusp solely depends on the maximum saturation of the hue, but is expressed as a
    /// combination of lightness and chroma.
    pub fn find_cusp(a: T, b: T) -> Self
    where
        T: MinMax + Cbrt,
        Oklab<T>: IntoColorUnclamped<LinSrgb<T>>,
    {
        // First, find the maximum saturation (saturation S = C/L)
        let max_saturation = Self::max_saturation(a.clone(), b.clone());
        // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
        let rgb_at_max: LinSrgb<T> = Oklab::new(
            T::one(),
            max_saturation.clone() * a,
            max_saturation.clone() * b,
        )
        .into_color_unclamped();

        let max_lightness =
            T::cbrt(T::one() / T::max(T::max(rgb_at_max.red, rgb_at_max.green), rgb_at_max.blue));
        Self {
            lightness: max_lightness.clone(),
            chroma: max_lightness * max_saturation,
        }
    }

    /// Returns the maximum `sRGB`-saturation (chroma / lightness) for the hue (`a` and `b`).
    ///
    /// # Arguments
    /// * `a` - the green/redness of the hue
    /// * `b` -  the blue/yellowness of the hue
    ///
    ///  `a` and `b` must be normalized to a chroma (`a²+b²`) of `1`.
    /// # See
    /// [Original C-Version](https://bottosson.github.io/posts/gamutclipping/#intersection-with-srgb-gamut)
    fn max_saturation(a: T, b: T) -> T {
        // Max saturation will be reached, when one of r, g or b goes below zero.
        // Select different coefficients depending on which component goes below zero first
        // wl, wm and ws are coefficients for https://en.wikipedia.org/wiki/LMS_color_space
        // -- the color space modelling human perception.
        let (k0, k1, k2, k3, k4, wl, wm, ws) =
            if T::from_f64(-1.88170328) * &a - T::from_f64(0.80936493) * &b > T::one() {
                // red component at zero first
                (
                    T::from_f64(1.19086277),
                    T::from_f64(1.76576728),
                    T::from_f64(0.59662641),
                    T::from_f64(0.75515197),
                    T::from_f64(0.56771245),
                    T::from_f64(4.0767416621),
                    T::from_f64(-3.3077115913),
                    T::from_f64(0.2309699292),
                )
            } else if T::from_f64(1.81444104) * &a - T::from_f64(1.19445276) * &b > T::one() {
                //green component at zero first
                (
                    T::from_f64(0.73956515),
                    T::from_f64(-0.45954404),
                    T::from_f64(0.08285427),
                    T::from_f64(0.12541070),
                    T::from_f64(0.14503204),
                    T::from_f64(-1.2684380046),
                    T::from_f64(2.6097574011),
                    T::from_f64(-0.3413193965),
                )
            } else {
                //blue component at zero first
                (
                    T::from_f64(1.35733652),
                    T::from_f64(-0.00915799),
                    T::from_f64(-1.15130210),
                    T::from_f64(-0.50559606),
                    T::from_f64(0.00692167),
                    T::from_f64(-0.0041960863),
                    T::from_f64(-0.7034186147),
                    T::from_f64(1.7076147010),
                )
            };

        // Approximate max saturation using a polynomial
        let mut approx_max_saturation =
            k0 + k1 * &a + k2 * &b + k3 * a.clone().powi(2) + k4 * &a * &b;
        // Get closer with Halley's method
        let k_l = T::from_f64(0.3963377774) * &a + T::from_f64(0.2158037573) * &b;
        let k_m = T::from_f64(-0.1055613458) * &a - T::from_f64(0.0638541728) * &b;
        let k_s = T::from_f64(-0.0894841775) * a - T::from_f64(1.2914855480) * b;

        for _i in 0..MAX_SRGB_SATURATION_SEARCH_MAX_ITER {
            let l_ = T::one() + approx_max_saturation.clone() * &k_l;
            let m_ = T::one() + approx_max_saturation.clone() * &k_m;
            let s_ = T::one() + approx_max_saturation.clone() * &k_s;

            let l = l_.clone().powi(3);
            let m = m_.clone().powi(3);
            let s = s_.clone().powi(3);

            // first derivative components
            let l_ds = T::from_f64(3.0) * &k_l * l_.clone().powi(2);
            let m_ds = T::from_f64(3.0) * &k_m * m_.clone().powi(2);
            let s_ds = T::from_f64(3.0) * &k_s * s_.clone().powi(2);

            // second derivative components
            let l_ds2 = T::from_f64(6.0) * k_l.clone().powi(2) * l_;
            let m_ds2 = T::from_f64(6.0) * k_m.clone().powi(2) * m_;
            let s_ds2 = T::from_f64(6.0) * k_s.clone().powi(2) * s_;

            // let x be the approximate maximum saturation and
            // i the current iteration
            // f = f(x_i), f1 = f'(x_i), f2 = f''(x_i) for
            let f = wl.clone() * l + wm.clone() * m + ws.clone() * s;
            let f1 = wl.clone() * l_ds + wm.clone() * m_ds + ws.clone() * s_ds;
            let f2 = wl.clone() * l_ds2 + wm.clone() * m_ds2 + ws.clone() * s_ds2;

            approx_max_saturation =
                approx_max_saturation - f.clone() * &f1 / (f1.powi(2) - T::from_f64(0.5) * f * f2);
        }
        approx_max_saturation
    }
}

#[cfg(feature = "approx")]
#[cfg(test)]
impl<T> OklabHue<T>
where
    T: RealAngle
        + One
        + Arithmetics
        + Trigonometry
        + MinMax
        + Cbrt
        + Powi
        + HasBoolMask<Mask = bool>
        + PartialOrd
        + Clone,
    Oklab<T>: IntoColorUnclamped<LinSrgb<T>>,
{
    pub(crate) fn srgb_limits(self) -> (LC<T>, T, T) {
        let normalized_hue_vector = self.into_cartesian();
        let lc = LC::find_cusp(
            normalized_hue_vector.0.clone(),
            normalized_hue_vector.1.clone(),
        );
        let a = lc.chroma.clone() * normalized_hue_vector.0;
        let b = lc.chroma.clone() * normalized_hue_vector.1;
        (lc, a, b)
    }
}

/// A representation of [`LC`], that allows computing the maximum chroma `C`
/// for a given lightness `L` in the gamut triangle of a hue as
/// ```text
/// C
///   = min(S*L, T*(1-L))
///   = min(lc.chroma / lc.lightness * L, lc.chroma / (T::one() - lc.lightness) * (1-L))
/// ```
#[derive(Debug, Copy, Clone)]
pub(crate) struct ST<T> {
    /// `lc.chroma / lc.lightness`
    pub s: T,
    /// `lc.chroma / (T::one() - lc.lightness)`
    pub t: T,
}

impl<T> From<LC<T>> for ST<T>
where
    T: Arithmetics + One + Clone,
{
    fn from(lc: LC<T>) -> Self {
        ST {
            s: lc.chroma.clone() / &lc.lightness,
            t: lc.chroma / (T::one() - lc.lightness),
        }
    }
}

impl<T> ST<T>
where
    T: Real + Arithmetics + One + Clone,
{
    /// Returns a smooth approximation of the location of the cusp.
    ///
    /// This polynomial was created by an optimization process.
    /// It has been designed so that
    ///
    ///   `S_mid < S_max` and
    ///
    ///   `T_mid < T_max`
    #[rustfmt::skip]
    fn mid(a_: T, b_: T) -> ST<T> {
        let s = T::from_f64(0.11516993) + T::one() / (
            T::from_f64(7.44778970)
                + T::from_f64(4.15901240) * &b_
                + a_.clone() * (T::from_f64(-2.19557347)+ T::from_f64(1.75198401) * &b_
                + a_.clone() * (T::from_f64(-2.13704948) - T::from_f64(10.02301043) * &b_
                + a_.clone() * (T::from_f64(-4.24894561) + T::from_f64(5.38770819) * &b_+ T::from_f64(4.69891013) * &a_
            )))
        );

        let t = T::from_f64(0.11239642)+ T::one()/ (
            T::from_f64(1.61320320) - T::from_f64(0.68124379) * &b_
                + a_.clone() * (T::from_f64(0.40370612)
                + T::from_f64(0.90148123) * &b_
                + a_.clone() * (T::from_f64(-0.27087943) + T::from_f64(0.61223990) * &b_
                + a_.clone() * (T::from_f64(0.00299215) - T::from_f64(0.45399568) * b_ - T::from_f64(0.14661872) * a_
            )))
        );
        ST { s, t }
    }
}

/// Maps an `oklab_lightness` to an *sRGB* reference-white based lightness `L_r`.
///
/// The `Oklab` lightness is relative, i.e. `0` is black, `1` is pure white, but
/// `Oklab` is scale independent -- i.e. the luminosity of `luminance == 1.0` is undefined.
/// Lightness values may mean different things in different contexts (maximum display
/// luminosity, background brightness and other viewing conditions).
///
/// *sRGB* however has a well defined dynamic range and a
/// [D65](https://en.wikipedia.org/wiki/Illuminant_D65) reference white luminance.
/// Mapping `1` to that luminance is just a matter of definition. But is say `0.8` `Oklab`
/// lightness equal to `0.5` or `0.9` `sRGB` luminance?
///
/// The shape and weights of `L_r` are chosen to closely matches the lightness estimate of
/// the `CIELab` color space and be nearly equal at `0.5`.
///
/// Inverse of [`toe_inv`]
///
/// # See
/// https://bottosson.github.io/posts/colorpicker/#intermission---a-new-lightness-estimate-for-oklab
pub(crate) fn toe<T>(oklab_lightness: T) -> T
where
    T: Real + Powi + Sqrt + Arithmetics + One + Clone,
{
    let k_1 = T::from_f64(0.206);
    let k_2 = T::from_f64(0.03);
    let k_3 = (T::one() + &k_1) / (T::one() + &k_2);
    T::from_f64(0.5)
        * (k_3.clone() * &oklab_lightness - &k_1
            + T::sqrt(
                (k_3.clone() * &oklab_lightness - k_1).powi(2)
                    + T::from_f64(4.0) * k_2 * k_3 * oklab_lightness,
            ))
}

/// Maps a *sRGB* reference-white based lightness to `Oklab`s scale-independent luminance.
///
/// Inverse of [`toe`]
pub(crate) fn toe_inv<T>(l_r: T) -> T
where
    T: Real + Powi + Arithmetics + One + Clone,
{
    let k_1 = T::from_f64(0.206);
    let k_2 = T::from_f64(0.03);
    let k_3 = (T::one() + &k_1) / (T::one() + &k_2);
    (l_r.clone().powi(2) + k_1 * &l_r) / (k_3 * (l_r + k_2))
}

#[cfg(feature = "approx")]
#[cfg(test)]
mod tests {

    use super::*;
    use crate::convert::FromColorUnclamped;
    use crate::rgb::Rgb;
    use crate::{encoding, Oklab, OklabHue, Srgb};
    use core::str::FromStr;

    #[cfg_attr(miri, ignore)]
    #[test]
    fn test_roundtrip_toe_is_original() {
        let n = 500;
        for i in 0..n {
            let x = i as f64 / n as f64;
            assert_ulps_eq!(toe_inv(toe(x)), x);
        }

        let x = 1000.0;
        assert_ulps_eq!(toe_inv(toe(x)), x);
    }

    #[test]
    fn test_toe() {
        assert_eq!(toe(0.0), 0.0);
        assert_eq!(toe(1.0), 1.0);
        let grey50srgb: Srgb = Rgb::<encoding::Srgb, u8>::from_str("#777777")
            .unwrap()
            .into_format();
        let grey50oklab = Oklab::from_color_unclamped(grey50srgb);
        println!("grey 50% oklab lightness: {}", grey50oklab.l);
        assert_relative_eq!(toe(grey50oklab.l), 0.5, epsilon = 1e-3);
    }

    #[cfg_attr(miri, ignore)]
    #[test]
    fn print_min_max_srgb_chroma_of_all_hues() {
        struct HueLc<T: Real> {
            hue: OklabHue<T>,
            lc: LC<T>,
        }

        let mut min_chroma: HueLc<f64> = HueLc {
            hue: OklabHue::new(f64::NAN),
            lc: LC {
                lightness: 0.0,
                chroma: f64::INFINITY,
            },
        };
        let mut max_chroma: HueLc<f64> = HueLc {
            hue: OklabHue::new(f64::NAN),
            lc: LC {
                lightness: 0.0,
                chroma: 0.0,
            },
        };
        let mut min_a = f64::INFINITY;
        let mut min_b = f64::INFINITY;
        let mut max_a = -f64::INFINITY;
        let mut max_b = -f64::INFINITY;

        // use 300000 for actually computing values (takes < 10 seconds)
        const SAMPLE_RESOLUTION: usize = 3;

        for i in 0..SAMPLE_RESOLUTION * 360 {
            let hue: OklabHue<f64> = OklabHue::new(i as f64 / (SAMPLE_RESOLUTION as f64));
            let (lc, a, b) = hue.srgb_limits();
            if lc.chroma < min_chroma.lc.chroma {
                min_chroma = HueLc { hue, lc };
            }
            if lc.chroma > max_chroma.lc.chroma {
                max_chroma = HueLc { hue, lc };
            }
            max_a = f64::max(max_a, a);
            min_a = f64::min(min_a, a);
            max_b = f64::max(max_b, b);
            min_b = f64::min(min_b, b);
        }

        let (normalized_a, normalized_b) = max_chroma.hue.into_cartesian();
        let (max_chroma_a, max_chroma_b) = (
            normalized_a * max_chroma.lc.chroma,
            normalized_b * max_chroma.lc.chroma,
        );

        println!(
            "Min chroma {} at hue {:?}°.",
            min_chroma.lc.chroma, min_chroma.hue,
        );

        println!(
            "Max chroma {} at hue {:?}° (Oklab a and b {}, {}).",
            max_chroma.lc.chroma, max_chroma.hue, max_chroma_a, max_chroma_b
        );
        println!("{} <= a <= {}", min_a, max_a);
        println!("{} <= b <= {}", min_b, max_b);
    }

    #[test]
    fn max_saturation_f64_eq_f32() {
        let lin_srgb = LinSrgb::new(0.0, 0.0, 1.0);
        let oklab_64 = Oklab::<f64>::from_color_unclamped(lin_srgb);
        let (normalized_a, normalized_b) = (
            oklab_64.a / oklab_64.get_chroma(),
            oklab_64.b / oklab_64.get_chroma(),
        );
        let saturation_64 = LC::max_saturation(normalized_a, normalized_b);
        let saturation_32 = LC::max_saturation(normalized_a as f32, normalized_b as f32);

        // EPSILON should be 1e-6. See issue https://github.com/Ogeon/palette/issues/296
        const EPSILON: f32 = 3e-1;
        assert_relative_eq!(
            saturation_32,
            saturation_64 as f32,
            epsilon = EPSILON,
            max_relative = EPSILON
        );
    }
}