tiny_skia/
edge_clipper.rs

1// Copyright 2009 The Android Open Source Project
2// Copyright 2020 Yevhenii Reizner
3//
4// Use of this source code is governed by a BSD-style license that can be
5// found in the LICENSE file.
6
7use arrayvec::ArrayVec;
8
9use tiny_skia_path::{NormalizedF32Exclusive, SCALAR_MAX};
10
11use crate::{Path, Point, Rect};
12
13use crate::edge_builder::{edge_iter, PathEdge, PathEdgeIter};
14use crate::line_clipper;
15use crate::path_geometry;
16
17#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
18use tiny_skia_path::NoStdFloat;
19
20// This is a fail-safe `arr[n..n+3].try_into().unwrap()` alternative.
21// Everything is checked at compile-time so there is no bound checking and panics.
22macro_rules! copy_3_points {
23    ($arr:expr, $i:expr) => {
24        [$arr[$i], $arr[$i + 1], $arr[$i + 2]]
25    };
26}
27
28macro_rules! copy_4_points {
29    ($arr:expr, $i:expr) => {
30        [$arr[$i], $arr[$i + 1], $arr[$i + 2], $arr[$i + 3]]
31    };
32}
33
34/// Max curvature in X and Y split cubic into 9 pieces, * (line + cubic).
35const MAX_VERBS: usize = 18;
36
37pub type ClippedEdges = ArrayVec<PathEdge, MAX_VERBS>;
38
39pub struct EdgeClipper {
40    clip: Rect,
41    can_cull_to_the_right: bool,
42    edges: ClippedEdges,
43}
44
45impl EdgeClipper {
46    fn new(clip: Rect, can_cull_to_the_right: bool) -> Self {
47        EdgeClipper {
48            clip,
49            can_cull_to_the_right,
50            edges: ArrayVec::new(),
51        }
52    }
53
54    fn clip_line(mut self, p0: Point, p1: Point) -> Option<ClippedEdges> {
55        let mut points = [Point::zero(); line_clipper::MAX_POINTS];
56        let points = line_clipper::clip(
57            &[p0, p1],
58            &self.clip,
59            self.can_cull_to_the_right,
60            &mut points,
61        );
62        if !points.is_empty() {
63            for i in 0..points.len() - 1 {
64                self.push_line(points[i], points[i + 1]);
65            }
66        }
67
68        if self.edges.is_empty() {
69            None
70        } else {
71            Some(self.edges)
72        }
73    }
74
75    fn push_line(&mut self, p0: Point, p1: Point) {
76        self.edges.push(PathEdge::LineTo(p0, p1));
77    }
78
79    fn push_vline(&mut self, x: f32, mut y0: f32, mut y1: f32, reverse: bool) {
80        if reverse {
81            core::mem::swap(&mut y0, &mut y1);
82        }
83
84        self.edges.push(PathEdge::LineTo(
85            Point::from_xy(x, y0),
86            Point::from_xy(x, y1),
87        ));
88    }
89
90    fn clip_quad(mut self, p0: Point, p1: Point, p2: Point) -> Option<ClippedEdges> {
91        let pts = [p0, p1, p2];
92        let bounds = Rect::from_points(&pts)?;
93
94        if !quick_reject(&bounds, &self.clip) {
95            let mut mono_y = [Point::zero(); 5];
96            let count_y = path_geometry::chop_quad_at_y_extrema(&pts, &mut mono_y);
97            for y in 0..=count_y {
98                let mut mono_x = [Point::zero(); 5];
99                let y_points: [Point; 3] = copy_3_points!(mono_y, y * 2);
100                let count_x = path_geometry::chop_quad_at_x_extrema(&y_points, &mut mono_x);
101                for x in 0..=count_x {
102                    let x_points: [Point; 3] = copy_3_points!(mono_x, x * 2);
103                    self.clip_mono_quad(&x_points);
104                }
105            }
106        }
107
108        if self.edges.is_empty() {
109            None
110        } else {
111            Some(self.edges)
112        }
113    }
114
115    // src[] must be monotonic in X and Y
116    fn clip_mono_quad(&mut self, src: &[Point; 3]) {
117        let mut pts = [Point::zero(); 3];
118        let mut reverse = sort_increasing_y(src, &mut pts);
119
120        // are we completely above or below
121        if pts[2].y <= self.clip.top() || pts[0].y >= self.clip.bottom() {
122            return;
123        }
124
125        // Now chop so that pts is contained within clip in Y
126        chop_quad_in_y(&self.clip, &mut pts);
127
128        if pts[0].x > pts[2].x {
129            pts.swap(0, 2);
130            reverse = !reverse;
131        }
132        debug_assert!(pts[0].x <= pts[1].x);
133        debug_assert!(pts[1].x <= pts[2].x);
134
135        // Now chop in X has needed, and record the segments
136
137        if pts[2].x <= self.clip.left() {
138            // wholly to the left
139            self.push_vline(self.clip.left(), pts[0].y, pts[2].y, reverse);
140            return;
141        }
142
143        if pts[0].x >= self.clip.right() {
144            // wholly to the right
145            if !self.can_cull_to_the_right {
146                self.push_vline(self.clip.right(), pts[0].y, pts[2].y, reverse);
147            }
148
149            return;
150        }
151
152        let mut t = NormalizedF32Exclusive::ANY;
153        let mut tmp = [Point::zero(); 5];
154
155        // are we partially to the left
156        if pts[0].x < self.clip.left() {
157            if chop_mono_quad_at_x(&pts, self.clip.left(), &mut t) {
158                path_geometry::chop_quad_at(&pts, t, &mut tmp);
159                self.push_vline(self.clip.left(), tmp[0].y, tmp[2].y, reverse);
160                // clamp to clean up imprecise numerics in the chop
161                tmp[2].x = self.clip.left();
162                tmp[3].x = tmp[3].x.max(self.clip.left());
163
164                pts[0] = tmp[2];
165                pts[1] = tmp[3];
166            } else {
167                // if chopMonoQuadAtY failed, then we may have hit inexact numerics
168                // so we just clamp against the left
169                self.push_vline(self.clip.left(), pts[0].y, pts[2].y, reverse);
170                return;
171            }
172        }
173
174        // are we partially to the right
175        if pts[2].x > self.clip.right() {
176            if chop_mono_quad_at_x(&pts, self.clip.right(), &mut t) {
177                path_geometry::chop_quad_at(&pts, t, &mut tmp);
178                // clamp to clean up imprecise numerics in the chop
179                tmp[1].x = tmp[1].x.min(self.clip.right());
180                tmp[2].x = self.clip.right();
181
182                self.push_quad(&copy_3_points!(tmp, 0), reverse);
183                self.push_vline(self.clip.right(), tmp[2].y, tmp[4].y, reverse);
184            } else {
185                // if chopMonoQuadAtY failed, then we may have hit inexact numerics
186                // so we just clamp against the right
187                pts[1].x = pts[1].x.min(self.clip.right());
188                pts[2].x = pts[2].x.min(self.clip.right());
189                self.push_quad(&pts, reverse);
190            }
191        } else {
192            // wholly inside the clip
193            self.push_quad(&pts, reverse);
194        }
195    }
196
197    fn push_quad(&mut self, pts: &[Point; 3], reverse: bool) {
198        if reverse {
199            self.edges.push(PathEdge::QuadTo(pts[2], pts[1], pts[0]));
200        } else {
201            self.edges.push(PathEdge::QuadTo(pts[0], pts[1], pts[2]));
202        }
203    }
204
205    fn clip_cubic(mut self, p0: Point, p1: Point, p2: Point, p3: Point) -> Option<ClippedEdges> {
206        let pts = [p0, p1, p2, p3];
207        let bounds = Rect::from_points(&pts)?;
208
209        // check if we're clipped out vertically
210        if bounds.bottom() > self.clip.top() && bounds.top() < self.clip.bottom() {
211            if too_big_for_reliable_float_math(&bounds) {
212                // can't safely clip the cubic, so we give up and draw a line (which we can safely clip)
213                //
214                // If we rewrote chopcubicat*extrema and chopmonocubic using doubles, we could very
215                // likely always handle the cubic safely, but (it seems) at a big loss in speed, so
216                // we'd only want to take that alternate impl if needed.
217                return self.clip_line(p0, p3);
218            } else {
219                let mut mono_y = [Point::zero(); 10];
220                let count_y = path_geometry::chop_cubic_at_y_extrema(&pts, &mut mono_y);
221                for y in 0..=count_y {
222                    let mut mono_x = [Point::zero(); 10];
223                    let y_points: [Point; 4] = copy_4_points!(mono_y, y * 3);
224                    let count_x = path_geometry::chop_cubic_at_x_extrema(&y_points, &mut mono_x);
225                    for x in 0..=count_x {
226                        let x_points: [Point; 4] = copy_4_points!(mono_x, x * 3);
227                        self.clip_mono_cubic(&x_points);
228                    }
229                }
230            }
231        }
232
233        if self.edges.is_empty() {
234            None
235        } else {
236            Some(self.edges)
237        }
238    }
239
240    // src[] must be monotonic in X and Y
241    fn clip_mono_cubic(&mut self, src: &[Point; 4]) {
242        let mut pts = [Point::zero(); 4];
243        let mut reverse = sort_increasing_y(src, &mut pts);
244
245        // are we completely above or below
246        if pts[3].y <= self.clip.top() || pts[0].y >= self.clip.bottom() {
247            return;
248        }
249
250        // Now chop so that pts is contained within clip in Y
251        chop_cubic_in_y(&self.clip, &mut pts);
252
253        if pts[0].x > pts[3].x {
254            pts.swap(0, 3);
255            pts.swap(1, 2);
256            reverse = !reverse;
257        }
258
259        // Now chop in X has needed, and record the segments
260
261        if pts[3].x <= self.clip.left() {
262            // wholly to the left
263            self.push_vline(self.clip.left(), pts[0].y, pts[3].y, reverse);
264            return;
265        }
266
267        if pts[0].x >= self.clip.right() {
268            // wholly to the right
269            if !self.can_cull_to_the_right {
270                self.push_vline(self.clip.right(), pts[0].y, pts[3].y, reverse);
271            }
272
273            return;
274        }
275
276        // are we partially to the left
277        if pts[0].x < self.clip.left() {
278            let mut tmp = [Point::zero(); 7];
279            chop_mono_cubic_at_x(&pts, self.clip.left(), &mut tmp);
280            self.push_vline(self.clip.left(), tmp[0].y, tmp[3].y, reverse);
281
282            // tmp[3, 4].fX should all be to the right of clip.left().
283            // Since we can't trust the numerics of
284            // the chopper, we force those conditions now
285            tmp[3].x = self.clip.left();
286            tmp[4].x = tmp[4].x.max(self.clip.left());
287
288            pts[0] = tmp[3];
289            pts[1] = tmp[4];
290            pts[2] = tmp[5];
291        }
292
293        // are we partially to the right
294        if pts[3].x > self.clip.right() {
295            let mut tmp = [Point::zero(); 7];
296            chop_mono_cubic_at_x(&pts, self.clip.right(), &mut tmp);
297            tmp[3].x = self.clip.right();
298            tmp[2].x = tmp[2].x.min(self.clip.right());
299
300            self.push_cubic(&copy_4_points!(tmp, 0), reverse);
301            self.push_vline(self.clip.right(), tmp[3].y, tmp[6].y, reverse);
302        } else {
303            // wholly inside the clip
304            self.push_cubic(&pts, reverse);
305        }
306    }
307
308    fn push_cubic(&mut self, pts: &[Point; 4], reverse: bool) {
309        if reverse {
310            self.edges
311                .push(PathEdge::CubicTo(pts[3], pts[2], pts[1], pts[0]));
312        } else {
313            self.edges
314                .push(PathEdge::CubicTo(pts[0], pts[1], pts[2], pts[3]));
315        }
316    }
317}
318
319pub struct EdgeClipperIter<'a> {
320    edge_iter: PathEdgeIter<'a>,
321    clip: Rect,
322    can_cull_to_the_right: bool,
323}
324
325impl<'a> EdgeClipperIter<'a> {
326    pub fn new(path: &'a Path, clip: Rect, can_cull_to_the_right: bool) -> Self {
327        EdgeClipperIter {
328            edge_iter: edge_iter(path),
329            clip,
330            can_cull_to_the_right,
331        }
332    }
333}
334
335impl Iterator for EdgeClipperIter<'_> {
336    type Item = ClippedEdges;
337
338    fn next(&mut self) -> Option<Self::Item> {
339        for edge in &mut self.edge_iter {
340            let clipper = EdgeClipper::new(self.clip, self.can_cull_to_the_right);
341
342            match edge {
343                PathEdge::LineTo(p0, p1) => {
344                    if let Some(edges) = clipper.clip_line(p0, p1) {
345                        return Some(edges);
346                    }
347                }
348                PathEdge::QuadTo(p0, p1, p2) => {
349                    if let Some(edges) = clipper.clip_quad(p0, p1, p2) {
350                        return Some(edges);
351                    }
352                }
353                PathEdge::CubicTo(p0, p1, p2, p3) => {
354                    if let Some(edges) = clipper.clip_cubic(p0, p1, p2, p3) {
355                        return Some(edges);
356                    }
357                }
358            }
359        }
360
361        None
362    }
363}
364
365fn quick_reject(bounds: &Rect, clip: &Rect) -> bool {
366    bounds.top() >= clip.bottom() || bounds.bottom() <= clip.top()
367}
368
369// src[] must be monotonic in Y. This routine copies src into dst, and sorts
370// it to be increasing in Y. If it had to reverse the order of the points,
371// it returns true, otherwise it returns false
372fn sort_increasing_y(src: &[Point], dst: &mut [Point]) -> bool {
373    // We need the data to be monotonically increasing in Y.
374    // Never fails, because src is always non-empty.
375    if src[0].y > src.last().unwrap().y {
376        for (i, p) in src.iter().rev().enumerate() {
377            dst[i] = *p;
378        }
379
380        true
381    } else {
382        dst[0..src.len()].copy_from_slice(src);
383        false
384    }
385}
386
387/// Modifies pts[] in place so that it is clipped in Y to the clip rect.
388fn chop_quad_in_y(clip: &Rect, pts: &mut [Point; 3]) {
389    let mut t = NormalizedF32Exclusive::ANY;
390    let mut tmp = [Point::zero(); 5];
391
392    // are we partially above
393    if pts[0].y < clip.top() {
394        if chop_mono_quad_at_y(pts, clip.top(), &mut t) {
395            // take the 2nd chopped quad
396            path_geometry::chop_quad_at(pts, t, &mut tmp);
397            // clamp to clean up imprecise numerics in the chop
398            tmp[2].y = clip.top();
399            tmp[3].y = tmp[3].y.max(clip.top());
400
401            pts[0] = tmp[2];
402            pts[1] = tmp[3];
403        } else {
404            // if chop_mono_quad_at_y failed, then we may have hit inexact numerics
405            // so we just clamp against the top
406            for p in pts.iter_mut() {
407                if p.y < clip.top() {
408                    p.y = clip.top();
409                }
410            }
411        }
412    }
413
414    // are we partially below
415    if pts[2].y > clip.bottom() {
416        if chop_mono_quad_at_y(pts, clip.bottom(), &mut t) {
417            path_geometry::chop_quad_at(pts, t, &mut tmp);
418            // clamp to clean up imprecise numerics in the chop
419            tmp[1].y = tmp[1].y.min(clip.bottom());
420            tmp[2].y = clip.bottom();
421
422            pts[1] = tmp[1];
423            pts[2] = tmp[2];
424        } else {
425            // if chop_mono_quad_at_y failed, then we may have hit inexact numerics
426            // so we just clamp against the bottom
427            for p in pts.iter_mut() {
428                if p.y > clip.bottom() {
429                    p.y = clip.bottom();
430                }
431            }
432        }
433    }
434}
435
436fn chop_mono_quad_at_x(pts: &[Point; 3], x: f32, t: &mut NormalizedF32Exclusive) -> bool {
437    chop_mono_quad_at(pts[0].x, pts[1].x, pts[2].x, x, t)
438}
439
440fn chop_mono_quad_at_y(pts: &[Point; 3], y: f32, t: &mut NormalizedF32Exclusive) -> bool {
441    chop_mono_quad_at(pts[0].y, pts[1].y, pts[2].y, y, t)
442}
443
444fn chop_mono_quad_at(
445    c0: f32,
446    c1: f32,
447    c2: f32,
448    target: f32,
449    t: &mut NormalizedF32Exclusive,
450) -> bool {
451    // Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2
452    // We solve for t, using quadratic equation, hence we have to rearrange
453    // our coefficients to look like At^2 + Bt + C
454    let a = c0 - c1 - c1 + c2;
455    let b = 2.0 * (c1 - c0);
456    let c = c0 - target;
457
458    let mut roots = path_geometry::new_t_values();
459    let count = path_geometry::find_unit_quad_roots(a, b, c, &mut roots);
460    if count != 0 {
461        *t = roots[0];
462        true
463    } else {
464        false
465    }
466}
467
468fn too_big_for_reliable_float_math(r: &Rect) -> bool {
469    // limit set as the largest float value for which we can still reliably compute things like
470    // - chopping at XY extrema
471    // - chopping at Y or X values for clipping
472    //
473    // Current value chosen just by experiment. Larger (and still succeeds) is always better.
474
475    let limit = (1 << 22) as f32;
476    r.left() < -limit || r.top() < -limit || r.right() > limit || r.bottom() > limit
477}
478
479/// Modifies pts[] in place so that it is clipped in Y to the clip rect.
480fn chop_cubic_in_y(clip: &Rect, pts: &mut [Point; 4]) {
481    // are we partially above
482    if pts[0].y < clip.top() {
483        let mut tmp = [Point::zero(); 7];
484        chop_mono_cubic_at_y(pts, clip.top(), &mut tmp);
485
486        // For a large range in the points, we can do a poor job of chopping, such that the t
487        // we computed resulted in the lower cubic still being partly above the clip.
488        //
489        // If just the first or first 2 Y values are above the fTop, we can just smash them
490        // down. If the first 3 Ys are above fTop, we can't smash all 3, as that can really
491        // distort the cubic. In this case, we take the first output (tmp[3..6] and treat it as
492        // a guess, and re-chop against fTop. Then we fall through to checking if we need to
493        // smash the first 1 or 2 Y values.
494        if tmp[3].y < clip.top() && tmp[4].y < clip.top() && tmp[5].y < clip.top() {
495            let tmp2: [Point; 4] = copy_4_points!(tmp, 3);
496            chop_mono_cubic_at_y(&tmp2, clip.top(), &mut tmp);
497        }
498
499        // tmp[3, 4].y should all be to the below clip.fTop.
500        // Since we can't trust the numerics of the chopper, we force those conditions now
501        tmp[3].y = clip.top();
502        tmp[4].y = tmp[4].y.max(clip.top());
503
504        pts[0] = tmp[3];
505        pts[1] = tmp[4];
506        pts[2] = tmp[5];
507    }
508
509    // are we partially below
510    if pts[3].y > clip.bottom() {
511        let mut tmp = [Point::zero(); 7];
512        chop_mono_cubic_at_y(pts, clip.bottom(), &mut tmp);
513        tmp[3].y = clip.bottom();
514        tmp[2].y = tmp[2].y.min(clip.bottom());
515
516        pts[1] = tmp[1];
517        pts[2] = tmp[2];
518        pts[3] = tmp[3];
519    }
520}
521
522fn chop_mono_cubic_at_x(src: &[Point; 4], x: f32, dst: &mut [Point; 7]) {
523    if path_geometry::chop_mono_cubic_at_x(src, x, dst) {
524        return;
525    }
526
527    let src_values = [src[0].x, src[1].x, src[2].x, src[3].x];
528    path_geometry::chop_cubic_at2(src, mono_cubic_closest_t(&src_values, x), dst);
529}
530
531fn chop_mono_cubic_at_y(src: &[Point; 4], y: f32, dst: &mut [Point; 7]) {
532    if path_geometry::chop_mono_cubic_at_y(src, y, dst) {
533        return;
534    }
535
536    let src_values = [src[0].y, src[1].y, src[2].y, src[3].y];
537    path_geometry::chop_cubic_at2(src, mono_cubic_closest_t(&src_values, y), dst);
538}
539
540fn mono_cubic_closest_t(src: &[f32; 4], mut x: f32) -> NormalizedF32Exclusive {
541    let mut t = 0.5;
542    let mut last_t;
543    let mut best_t = t;
544    let mut step = 0.25;
545    let d = src[0];
546    let a = src[3] + 3.0 * (src[1] - src[2]) - d;
547    let b = 3.0 * (src[2] - src[1] - src[1] + d);
548    let c = 3.0 * (src[1] - d);
549    x -= d;
550    let mut closest = SCALAR_MAX;
551    loop {
552        let loc = ((a * t + b) * t + c) * t;
553        let dist = (loc - x).abs();
554        if closest > dist {
555            closest = dist;
556            best_t = t;
557        }
558
559        last_t = t;
560        t += if loc < x { step } else { -step };
561        step *= 0.5;
562
563        if !(closest > 0.25 && last_t != t) {
564            break;
565        }
566    }
567
568    NormalizedF32Exclusive::new(best_t).unwrap()
569}