tiny_skia/
edge_builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2011 Google Inc.
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use alloc::vec::Vec;

use tiny_skia_path::PathVerb;

use crate::{Path, Point};

use crate::edge::{CubicEdge, Edge, LineEdge, QuadraticEdge};
use crate::edge_clipper::EdgeClipperIter;
use crate::geom::ScreenIntRect;
use crate::path_geometry;

#[derive(Copy, Clone, PartialEq, Debug)]
enum Combine {
    No,
    Partial,
    Total,
}

#[derive(Copy, Clone, Debug)]
pub struct ShiftedIntRect {
    shifted: ScreenIntRect,
    shift: i32,
}

impl ShiftedIntRect {
    pub fn new(rect: &ScreenIntRect, shift: i32) -> Option<Self> {
        let shifted = ScreenIntRect::from_xywh(
            rect.x() << shift,
            rect.y() << shift,
            rect.width() << shift,
            rect.height() << shift,
        )?;
        Some(ShiftedIntRect { shifted, shift })
    }

    pub fn shifted(&self) -> &ScreenIntRect {
        &self.shifted
    }

    pub fn recover(&self) -> ScreenIntRect {
        ScreenIntRect::from_xywh(
            self.shifted.x() >> self.shift,
            self.shifted.y() >> self.shift,
            self.shifted.width() >> self.shift,
            self.shifted.height() >> self.shift,
        )
        .unwrap() // cannot fail, because the original rect was valid
    }
}

pub struct BasicEdgeBuilder {
    edges: Vec<Edge>,
    clip_shift: i32,
}

impl BasicEdgeBuilder {
    pub fn new(clip_shift: i32) -> Self {
        BasicEdgeBuilder {
            edges: Vec::with_capacity(64), // TODO: stack array + fallback
            clip_shift,
        }
    }

    // Skia returns a linked list here, but it's a nightmare to use in Rust,
    // so we're mimicking it with Vec.
    pub fn build_edges(
        path: &Path,
        clip: Option<&ShiftedIntRect>,
        clip_shift: i32,
    ) -> Option<Vec<Edge>> {
        // If we're convex, then we need both edges, even if the right edge is past the clip.
        // let can_cull_to_the_right = !path.isConvex();
        let can_cull_to_the_right = false; // TODO: this

        let mut builder = BasicEdgeBuilder::new(clip_shift);
        if !builder.build(path, clip, can_cull_to_the_right) {
            log::warn!("infinite or NaN segments detected during edges building");
            return None;
        }

        if builder.edges.len() < 2 {
            return None;
        }

        Some(builder.edges)
    }

    // TODO: build_poly
    pub fn build(
        &mut self,
        path: &Path,
        clip: Option<&ShiftedIntRect>,
        can_cull_to_the_right: bool,
    ) -> bool {
        if let Some(clip) = clip {
            let clip = clip.recover().to_rect();
            for edges in EdgeClipperIter::new(path, clip, can_cull_to_the_right) {
                for edge in edges {
                    match edge {
                        PathEdge::LineTo(p0, p1) => {
                            if !p0.is_finite() || !p1.is_finite() {
                                return false;
                            }

                            self.push_line(&[p0, p1])
                        }
                        PathEdge::QuadTo(p0, p1, p2) => {
                            if !p0.is_finite() || !p1.is_finite() || !p2.is_finite() {
                                return false;
                            }

                            self.push_quad(&[p0, p1, p2])
                        }
                        PathEdge::CubicTo(p0, p1, p2, p3) => {
                            if !p0.is_finite()
                                || !p1.is_finite()
                                || !p2.is_finite()
                                || !p3.is_finite()
                            {
                                return false;
                            }

                            self.push_cubic(&[p0, p1, p2, p3])
                        }
                    }
                }
            }
        } else {
            for edge in edge_iter(path) {
                match edge {
                    PathEdge::LineTo(p0, p1) => {
                        self.push_line(&[p0, p1]);
                    }
                    PathEdge::QuadTo(p0, p1, p2) => {
                        let points = [p0, p1, p2];
                        let mut mono_x = [Point::zero(); 5];
                        let n = path_geometry::chop_quad_at_y_extrema(&points, &mut mono_x);
                        for i in 0..=n {
                            self.push_quad(&mono_x[i * 2..]);
                        }
                    }
                    PathEdge::CubicTo(p0, p1, p2, p3) => {
                        let points = [p0, p1, p2, p3];
                        let mut mono_y = [Point::zero(); 10];
                        let n = path_geometry::chop_cubic_at_y_extrema(&points, &mut mono_y);
                        for i in 0..=n {
                            self.push_cubic(&mono_y[i * 3..]);
                        }
                    }
                }
            }
        }

        true
    }

    fn push_line(&mut self, points: &[Point; 2]) {
        if let Some(edge) = LineEdge::new(points[0], points[1], self.clip_shift) {
            let combine = if edge.is_vertical() && !self.edges.is_empty() {
                if let Some(Edge::Line(last)) = self.edges.last_mut() {
                    combine_vertical(&edge, last)
                } else {
                    Combine::No
                }
            } else {
                Combine::No
            };

            match combine {
                Combine::Total => {
                    self.edges.pop();
                }
                Combine::Partial => {}
                Combine::No => self.edges.push(Edge::Line(edge)),
            }
        }
    }

    fn push_quad(&mut self, points: &[Point]) {
        if let Some(edge) = QuadraticEdge::new(points, self.clip_shift) {
            self.edges.push(Edge::Quadratic(edge));
        }
    }

    fn push_cubic(&mut self, points: &[Point]) {
        if let Some(edge) = CubicEdge::new(points, self.clip_shift) {
            self.edges.push(Edge::Cubic(edge));
        }
    }
}

fn combine_vertical(edge: &LineEdge, last: &mut LineEdge) -> Combine {
    if last.dx != 0 || edge.x != last.x {
        return Combine::No;
    }

    if edge.winding == last.winding {
        return if edge.last_y + 1 == last.first_y {
            last.first_y = edge.first_y;
            Combine::Partial
        } else if edge.first_y == last.last_y + 1 {
            last.last_y = edge.last_y;
            Combine::Partial
        } else {
            Combine::No
        };
    }

    if edge.first_y == last.first_y {
        return if edge.last_y == last.last_y {
            Combine::Total
        } else if edge.last_y < last.last_y {
            last.first_y = edge.last_y + 1;
            Combine::Partial
        } else {
            last.first_y = last.last_y + 1;
            last.last_y = edge.last_y;
            last.winding = edge.winding;
            Combine::Partial
        };
    }

    if edge.last_y == last.last_y {
        if edge.first_y > last.first_y {
            last.last_y = edge.first_y - 1;
        } else {
            last.last_y = last.first_y - 1;
            last.first_y = edge.first_y;
            last.winding = edge.winding;
        }

        return Combine::Partial;
    }

    Combine::No
}

pub fn edge_iter(path: &Path) -> PathEdgeIter {
    PathEdgeIter {
        path,
        verb_index: 0,
        points_index: 0,
        move_to: Point::zero(),
        needs_close_line: false,
    }
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum PathEdge {
    LineTo(Point, Point),
    QuadTo(Point, Point, Point),
    CubicTo(Point, Point, Point, Point),
}

/// Lightweight variant of PathIter that only returns segments (e.g. lines/quads).
///
/// Does not return Move or Close. Always "auto-closes" each contour.
pub struct PathEdgeIter<'a> {
    path: &'a Path,
    verb_index: usize,
    points_index: usize,
    move_to: Point,
    needs_close_line: bool,
}

impl<'a> PathEdgeIter<'a> {
    fn close_line(&mut self) -> Option<PathEdge> {
        self.needs_close_line = false;

        let edge = PathEdge::LineTo(self.path.points()[self.points_index - 1], self.move_to);
        Some(edge)
    }
}

impl<'a> Iterator for PathEdgeIter<'a> {
    type Item = PathEdge;

    fn next(&mut self) -> Option<Self::Item> {
        if self.verb_index < self.path.verbs().len() {
            let verb = self.path.verbs()[self.verb_index];
            self.verb_index += 1;

            match verb {
                PathVerb::Move => {
                    if self.needs_close_line {
                        let res = self.close_line();
                        self.move_to = self.path.points()[self.points_index];
                        self.points_index += 1;
                        return res;
                    }

                    self.move_to = self.path.points()[self.points_index];
                    self.points_index += 1;
                    self.next()
                }
                PathVerb::Close => {
                    if self.needs_close_line {
                        return self.close_line();
                    }

                    self.next()
                }
                _ => {
                    // Actual edge.
                    self.needs_close_line = true;

                    let edge;
                    match verb {
                        PathVerb::Line => {
                            edge = PathEdge::LineTo(
                                self.path.points()[self.points_index - 1],
                                self.path.points()[self.points_index + 0],
                            );
                            self.points_index += 1;
                        }
                        PathVerb::Quad => {
                            edge = PathEdge::QuadTo(
                                self.path.points()[self.points_index - 1],
                                self.path.points()[self.points_index + 0],
                                self.path.points()[self.points_index + 1],
                            );
                            self.points_index += 2;
                        }
                        PathVerb::Cubic => {
                            edge = PathEdge::CubicTo(
                                self.path.points()[self.points_index - 1],
                                self.path.points()[self.points_index + 0],
                                self.path.points()[self.points_index + 1],
                                self.path.points()[self.points_index + 2],
                            );
                            self.points_index += 3;
                        }
                        _ => unreachable!(),
                    };

                    Some(edge)
                }
            }
        } else if self.needs_close_line {
            self.close_line()
        } else {
            None
        }
    }
}