tiny_skia/path64/line_cubic_intersections.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
// Copyright 2012 Google Inc.
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/*
Find the intersection of a line and cubic by solving for valid t values.
Analogous to line-quadratic intersection, solve line-cubic intersection by
representing the cubic as:
x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
and the line as:
y = i*x + j (if the line is more horizontal)
or:
x = i*y + j (if the line is more vertical)
Then using Mathematica, solve for the values of t where the cubic intersects the
line:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
(out) -e + j +
3 e t - 3 f t -
3 e t^2 + 6 f t^2 - 3 g t^2 +
e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
i ( a -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) a - j -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
i ( e -
3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
Solving this with Mathematica produces an expression with hundreds of terms;
instead, use Numeric Solutions recipe to solve the cubic.
The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
C = 3*(-(-e + f ) + i*(-a + b ) )
D = (-( e ) + i*( a ) + j )
The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
C = 3*( (-a + b ) - i*(-e + f ) )
D = ( ( a ) - i*( e ) - j )
For horizontal lines:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) e - j -
3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3
*/
use super::cubic64::{self, Cubic64};
use super::point64::SearchAxis;
use super::Scalar64;
pub fn horizontal_intersect(cubic: &Cubic64, axis_intercept: f64, roots: &mut [f64; 3]) -> usize {
let (a, b, c, mut d) = cubic64::coefficients(&cubic.as_f64_slice()[1..]);
d -= axis_intercept;
let mut count = cubic64::roots_valid_t(a, b, c, d, roots);
let mut index = 0;
while index < count {
let calc_pt = cubic.point_at_t(roots[index]);
if !calc_pt.y.approximately_equal(axis_intercept) {
let mut extreme_ts = [0.0; 6];
let extrema = cubic64::find_extrema(&cubic.as_f64_slice()[1..], &mut extreme_ts);
count = cubic.search_roots(
extrema,
axis_intercept,
SearchAxis::Y,
&mut extreme_ts,
roots,
);
break;
}
index += 1;
}
count
}
pub fn vertical_intersect(cubic: &Cubic64, axis_intercept: f64, roots: &mut [f64; 3]) -> usize {
let (a, b, c, mut d) = cubic64::coefficients(&cubic.as_f64_slice());
d -= axis_intercept;
let mut count = cubic64::roots_valid_t(a, b, c, d, roots);
let mut index = 0;
while index < count {
let calc_pt = cubic.point_at_t(roots[index]);
if !calc_pt.x.approximately_equal(axis_intercept) {
let mut extreme_ts = [0.0; 6];
let extrema = cubic64::find_extrema(&cubic.as_f64_slice(), &mut extreme_ts);
count = cubic.search_roots(
extrema,
axis_intercept,
SearchAxis::X,
&mut extreme_ts,
roots,
);
break;
}
index += 1;
}
count
}