palette/cast/packed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
use core::marker::PhantomData;
use crate::cast::UintCast;
use super::ArrayCast;
/// A color packed into a compact format, such as an unsigned integer.
///
/// `Packed` implements [ArrayCast](crate::cast::ArrayCast) and
/// [UintCast](crate::cast::UintCast) so it can easily be constructed from
/// slices, arrays and unsigned integers.
///
/// ```
/// // `PackedArgb` is an alias for `Packed<rgb::channels::Argb, P = u32>`.
/// use palette::{rgb::PackedArgb, cast::UintsAs};
///
/// let raw = [0x7F0080u32, 0x60BBCC];
/// let colors: &[PackedArgb] = raw.uints_as();
///
/// assert_eq!(colors.len(), 2);
/// assert_eq!(colors[0].color, 0x7F0080);
/// assert_eq!(colors[1].color, 0x60BBCC);
/// ```
///
/// ## Packed Integer Type Represented in `u32`.
///
/// A common example of a packed format is when an RGBA color is encoded as a
/// hexadecimal number (such as `0x7F0080` from above). Two hexadecimal digits
/// (8-bits) express each value of the Red, Green, Blue, and Alpha components in
/// the RGBA color.
///
/// Note that conversion from float to integer component types in Palette rounds
/// to nearest even: an `Rgb` component of `0.5` will convert to `0x80`/`128`,
/// not `0x7F`/`127`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Srgb, Srgba};
/// use palette::rgb::{PackedArgb, PackedRgba};
///
/// let packed: PackedArgb = Srgb::new(0.5, 0.0, 0.5).into_format().into();
/// assert_eq!(0xFF80_0080, packed.color);
///
/// let unpacked: Srgba<u8> = PackedRgba::from(0xFFFF_FF80u32).into();
/// assert_relative_eq!(
/// Srgba::new(1.0, 1.0, 1.0, 0.5),
/// unpacked.into_format(),
/// epsilon = 0.01
/// );
///
/// // By default, `Packed` uses `Argb` order for creating `Rgb` colors to make
/// // entering 6-digit hex numbers more convenient
/// let rgb = Srgb::from(0xFF8000);
/// assert_eq!(Srgb::new(0xFF, 0x80, 0x00), rgb);
///
/// let rgba = Srgba::from(0xFF80007F);
/// assert_eq!(Srgba::new(0xFF, 0x80, 0x00, 0x7F), rgba);
/// ```
///
/// When an `Rgb` type is packed, the alpha value will be `0xFF` in the
/// corresponding `u32`. Converting from a packed color type back to an `Rgb`
/// type will disregard the alpha value.
#[derive(Debug, PartialEq, Eq)]
#[repr(transparent)]
pub struct Packed<O, P> {
/// The color packed into a type `P`, such as `u32` or `[u8; 4]`.
pub color: P,
/// The channel order for the color components in the packed data. See
/// [`ComponentOrder`].
pub channel_order: PhantomData<O>,
}
impl<O, P> Packed<O, P> {
/// Transform a color value into a packed memory representation.
#[inline]
pub fn pack<C>(color: C) -> Self
where
O: ComponentOrder<C, P>,
{
Packed {
color: O::pack(color),
channel_order: PhantomData,
}
}
/// Transform a packed color into a regular color value.
#[inline]
pub fn unpack<C>(self) -> C
where
O: ComponentOrder<C, P>,
{
O::unpack(self.color)
}
}
impl<O, P> Copy for Packed<O, P> where P: Copy {}
impl<O, P> Clone for Packed<O, P>
where
P: Clone,
{
#[inline]
fn clone(&self) -> Self {
Self {
color: self.color.clone(),
channel_order: PhantomData,
}
}
}
// Safety:
//
// `Packed` is a transparent wrapper around `[u8; N]`, which fulfills the
// requirements of `ArrayCast`.
unsafe impl<O, T, const N: usize> ArrayCast for Packed<O, [T; N]> {
type Array = [T; N];
}
// Safety:
//
// `Packed` is a transparent wrapper around `u8`, which fulfills the
// requirements of `UintCast`.
unsafe impl<O> UintCast for Packed<O, u8> {
type Uint = u8;
}
// Safety:
//
// `Packed` is a transparent wrapper around `u16`, which fulfills the
// requirements of `UintCast`.
unsafe impl<O> UintCast for Packed<O, u16> {
type Uint = u16;
}
// Safety:
//
// `Packed` is a transparent wrapper around `u32`, which fulfills the
// requirements of `UintCast`.
unsafe impl<O> UintCast for Packed<O, u32> {
type Uint = u32;
}
// Safety:
//
// `Packed` is a transparent wrapper around `u64`, which fulfills the
// requirements of `UintCast`.
unsafe impl<O> UintCast for Packed<O, u64> {
type Uint = u64;
}
// Safety:
//
// `Packed` is a transparent wrapper around `u128`, which fulfills the
// requirements of `UintCast`.
unsafe impl<O> UintCast for Packed<O, u128> {
type Uint = u128;
}
impl_array_casts!([O, T, const N: usize] Packed<O, [T; N]>, [T; N]);
impl_uint_casts_self!(Packed<O, P>, P, where Packed<O, P>: UintCast<Uint = P>);
impl_uint_casts_other!([O] Packed<O, u8>, u8);
impl_uint_casts_other!([O] Packed<O, u16>, u16);
impl_uint_casts_other!([O] Packed<O, u32>, u32);
impl_uint_casts_other!([O] Packed<O, u64>, u64);
impl_uint_casts_other!([O] Packed<O, u128>, u128);
#[cfg(feature = "bytemuck")]
unsafe impl<O, P> bytemuck::Zeroable for Packed<O, P> where P: bytemuck::Zeroable {}
#[cfg(feature = "bytemuck")]
unsafe impl<O: 'static, P> bytemuck::Pod for Packed<O, P> where P: bytemuck::Pod {}
/// Packs and unpacks color types with some component order.
///
/// As an example, RGBA channels may be ordered as `ABGR`, `ARGB`, `BGRA`, or
/// `RGBA`.
pub trait ComponentOrder<C, P> {
/// Combine the components of a color into the packed format.
fn pack(color: C) -> P;
/// Split the packed color into its separate components.
fn unpack(packed: P) -> C;
}
impl<C, T> ComponentOrder<C, u8> for T
where
T: ComponentOrder<C, [u8; 1]>,
{
#[inline]
fn pack(color: C) -> u8 {
let [packed] = T::pack(color);
packed
}
#[inline]
fn unpack(packed: u8) -> C {
T::unpack([packed])
}
}
impl<C, T> ComponentOrder<C, u16> for T
where
T: ComponentOrder<C, [u8; 2]>,
{
#[inline]
fn pack(color: C) -> u16 {
u16::from_be_bytes(T::pack(color))
}
#[inline]
fn unpack(packed: u16) -> C {
T::unpack(packed.to_be_bytes())
}
}
impl<C, T> ComponentOrder<C, u32> for T
where
T: ComponentOrder<C, [u8; 4]>,
{
#[inline]
fn pack(color: C) -> u32 {
u32::from_be_bytes(T::pack(color))
}
#[inline]
fn unpack(packed: u32) -> C {
T::unpack(packed.to_be_bytes())
}
}
impl<C, T> ComponentOrder<C, u64> for T
where
T: ComponentOrder<C, [u8; 8]>,
{
#[inline]
fn pack(color: C) -> u64 {
u64::from_be_bytes(T::pack(color))
}
#[inline]
fn unpack(packed: u64) -> C {
T::unpack(packed.to_be_bytes())
}
}
impl<C, T> ComponentOrder<C, u128> for T
where
T: ComponentOrder<C, [u8; 16]>,
{
#[inline]
fn pack(color: C) -> u128 {
u128::from_be_bytes(T::pack(color))
}
#[inline]
fn unpack(packed: u128) -> C {
T::unpack(packed.to_be_bytes())
}
}