jpeg_decoder/
decoder.rs

1use crate::error::{Error, Result, UnsupportedFeature};
2use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
3use crate::marker::Marker;
4use crate::parser::{
5    parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos,
6    AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
7    IccChunk, ScanInfo,
8};
9use crate::read_u8;
10use crate::upsampler::Upsampler;
11use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope};
12use alloc::borrow::ToOwned;
13use alloc::sync::Arc;
14use alloc::vec::Vec;
15use alloc::{format, vec};
16use core::cmp;
17use core::mem;
18use core::ops::Range;
19use std::io::Read;
20
21pub const MAX_COMPONENTS: usize = 4;
22
23mod lossless;
24use self::lossless::compute_image_lossless;
25
26#[rustfmt::skip]
27static UNZIGZAG: [u8; 64] = [
28     0,  1,  8, 16,  9,  2,  3, 10,
29    17, 24, 32, 25, 18, 11,  4,  5,
30    12, 19, 26, 33, 40, 48, 41, 34,
31    27, 20, 13,  6,  7, 14, 21, 28,
32    35, 42, 49, 56, 57, 50, 43, 36,
33    29, 22, 15, 23, 30, 37, 44, 51,
34    58, 59, 52, 45, 38, 31, 39, 46,
35    53, 60, 61, 54, 47, 55, 62, 63,
36];
37
38/// An enumeration over combinations of color spaces and bit depths a pixel can have.
39#[derive(Clone, Copy, Debug, PartialEq)]
40pub enum PixelFormat {
41    /// Luminance (grayscale), 8 bits
42    L8,
43    /// Luminance (grayscale), 16 bits
44    L16,
45    /// RGB, 8 bits per channel
46    RGB24,
47    /// CMYK, 8 bits per channel
48    CMYK32,
49}
50
51impl PixelFormat {
52    /// Determine the size in bytes of each pixel in this format
53    pub fn pixel_bytes(&self) -> usize {
54        match self {
55            PixelFormat::L8 => 1,
56            PixelFormat::L16 => 2,
57            PixelFormat::RGB24 => 3,
58            PixelFormat::CMYK32 => 4,
59        }
60    }
61}
62
63/// Represents metadata of an image.
64#[derive(Clone, Copy, Debug, PartialEq)]
65pub struct ImageInfo {
66    /// The width of the image, in pixels.
67    pub width: u16,
68    /// The height of the image, in pixels.
69    pub height: u16,
70    /// The pixel format of the image.
71    pub pixel_format: PixelFormat,
72    /// The coding process of the image.
73    pub coding_process: CodingProcess,
74}
75
76/// Describes the colour transform to apply before binary data is returned
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
78#[non_exhaustive]
79pub enum ColorTransform {
80    /// No transform should be applied and the data is returned as-is.
81    None,
82    /// Unknown colour transformation
83    Unknown,
84    /// Grayscale transform should be applied (expects 1 channel)
85    Grayscale,
86    /// RGB transform should be applied.
87    RGB,
88    /// YCbCr transform should be applied.
89    YCbCr,
90    /// CMYK transform should be applied.
91    CMYK,
92    /// YCCK transform should be applied.
93    YCCK,
94    /// big gamut Y/Cb/Cr, bg-sYCC
95    JcsBgYcc,
96    /// big gamut red/green/blue, bg-sRGB
97    JcsBgRgb,
98}
99
100/// JPEG decoder
101pub struct Decoder<R> {
102    reader: R,
103
104    frame: Option<FrameInfo>,
105    dc_huffman_tables: Vec<Option<HuffmanTable>>,
106    ac_huffman_tables: Vec<Option<HuffmanTable>>,
107    quantization_tables: [Option<Arc<[u16; 64]>>; 4],
108
109    restart_interval: u16,
110
111    adobe_color_transform: Option<AdobeColorTransform>,
112    color_transform: Option<ColorTransform>,
113
114    is_jfif: bool,
115    is_mjpeg: bool,
116
117    icc_markers: Vec<IccChunk>,
118
119    exif_data: Option<Vec<u8>>,
120    xmp_data: Option<Vec<u8>>,
121    psir_data: Option<Vec<u8>>,
122
123    // Used for progressive JPEGs.
124    coefficients: Vec<Vec<i16>>,
125    // Bitmask of which coefficients has been completely decoded.
126    coefficients_finished: [u64; MAX_COMPONENTS],
127
128    // Maximum allowed size of decoded image buffer
129    decoding_buffer_size_limit: usize,
130}
131
132impl<R: Read> Decoder<R> {
133    /// Creates a new `Decoder` using the reader `reader`.
134    pub fn new(reader: R) -> Decoder<R> {
135        Decoder {
136            reader,
137            frame: None,
138            dc_huffman_tables: vec![None, None, None, None],
139            ac_huffman_tables: vec![None, None, None, None],
140            quantization_tables: [None, None, None, None],
141            restart_interval: 0,
142            adobe_color_transform: None,
143            color_transform: None,
144            is_jfif: false,
145            is_mjpeg: false,
146            icc_markers: Vec::new(),
147            exif_data: None,
148            xmp_data: None,
149            psir_data: None,
150            coefficients: Vec::new(),
151            coefficients_finished: [0; MAX_COMPONENTS],
152            decoding_buffer_size_limit: usize::MAX,
153        }
154    }
155
156    /// Colour transform to use when decoding the image. App segments relating to colour transforms
157    /// will be ignored.
158    pub fn set_color_transform(&mut self, transform: ColorTransform) {
159        self.color_transform = Some(transform);
160    }
161
162    /// Set maximum buffer size allowed for decoded images
163    pub fn set_max_decoding_buffer_size(&mut self, max: usize) {
164        self.decoding_buffer_size_limit = max;
165    }
166
167    /// Returns metadata about the image.
168    ///
169    /// The returned value will be `None` until a call to either `read_info` or `decode` has
170    /// returned `Ok`.
171    pub fn info(&self) -> Option<ImageInfo> {
172        match self.frame {
173            Some(ref frame) => {
174                let pixel_format = match frame.components.len() {
175                    1 => match frame.precision {
176                        2..=8 => PixelFormat::L8,
177                        9..=16 => PixelFormat::L16,
178                        _ => panic!(),
179                    },
180                    3 => PixelFormat::RGB24,
181                    4 => PixelFormat::CMYK32,
182                    _ => panic!(),
183                };
184
185                Some(ImageInfo {
186                    width: frame.output_size.width,
187                    height: frame.output_size.height,
188                    pixel_format,
189                    coding_process: frame.coding_process,
190                })
191            }
192            None => None,
193        }
194    }
195
196    /// Returns raw exif data, starting at the TIFF header, if the image contains any.
197    ///
198    /// The returned value will be `None` until a call to `decode` has returned `Ok`.    
199    pub fn exif_data(&self) -> Option<&[u8]> {
200        self.exif_data.as_deref()
201    }
202
203    /// Returns the raw XMP packet if there is any.
204    ///
205    /// The returned value will be `None` until a call to `decode` has returned `Ok`.
206    pub fn xmp_data(&self) -> Option<&[u8]> {
207        self.xmp_data.as_deref()
208    }
209
210    /// Returns the embeded icc profile if the image contains one.
211    pub fn icc_profile(&self) -> Option<Vec<u8>> {
212        let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
213        let num_markers = self.icc_markers.len();
214        if num_markers == 0 || num_markers >= 255 {
215            return None;
216        }
217        // check the validity of the markers
218        for chunk in &self.icc_markers {
219            if usize::from(chunk.num_markers) != num_markers {
220                // all the lengths must match
221                return None;
222            }
223            if chunk.seq_no == 0 {
224                return None;
225            }
226            if marker_present[usize::from(chunk.seq_no)].is_some() {
227                // duplicate seq_no
228                return None;
229            } else {
230                marker_present[usize::from(chunk.seq_no)] = Some(chunk);
231            }
232        }
233
234        // assemble them together by seq_no failing if any are missing
235        let mut data = Vec::new();
236        // seq_no's start at 1
237        for &chunk in marker_present.get(1..=num_markers)? {
238            data.extend_from_slice(&chunk?.data);
239        }
240        Some(data)
241    }
242
243    /// Heuristic to avoid starting thread, synchronization if we expect a small amount of
244    /// parallelism to be utilized.
245    fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind {
246        const PARALLELISM_THRESHOLD: u64 = 128 * 128;
247
248        match worker_preference {
249            PreferWorkerKind::Immediate => PreferWorkerKind::Immediate,
250            PreferWorkerKind::Multithreaded => {
251                let width: u64 = frame.output_size.width.into();
252                let height: u64 = frame.output_size.width.into();
253                if width * height > PARALLELISM_THRESHOLD {
254                    PreferWorkerKind::Multithreaded
255                } else {
256                    PreferWorkerKind::Immediate
257                }
258            }
259        }
260    }
261
262    /// Tries to read metadata from the image without decoding it.
263    ///
264    /// If successful, the metadata can be obtained using the `info` method.
265    pub fn read_info(&mut self) -> Result<()> {
266        WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ())
267    }
268
269    /// Configure the decoder to scale the image during decoding.
270    ///
271    /// This efficiently scales the image by the smallest supported scale
272    /// factor that produces an image larger than or equal to the requested
273    /// size in at least one axis. The currently implemented scale factors
274    /// are 1/8, 1/4, 1/2 and 1.
275    ///
276    /// To generate a thumbnail of an exact size, pass the desired size and
277    /// then scale to the final size using a traditional resampling algorithm.
278    pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
279        self.read_info()?;
280        let frame = self.frame.as_mut().unwrap();
281        let idct_size = crate::idct::choose_idct_size(
282            frame.image_size,
283            Dimensions {
284                width: requested_width,
285                height: requested_height,
286            },
287        );
288        frame.update_idct_size(idct_size)?;
289        Ok((frame.output_size.width, frame.output_size.height))
290    }
291
292    /// Decodes the image and returns the decoded pixels if successful.
293    pub fn decode(&mut self) -> Result<Vec<u8>> {
294        WorkerScope::with(|worker| self.decode_internal(false, worker))
295    }
296
297    fn decode_internal(
298        &mut self,
299        stop_after_metadata: bool,
300        worker_scope: &WorkerScope,
301    ) -> Result<Vec<u8>> {
302        if stop_after_metadata && self.frame.is_some() {
303            // The metadata has already been read.
304            return Ok(Vec::new());
305        } else if self.frame.is_none()
306            && (read_u8(&mut self.reader)? != 0xFF
307                || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI))
308        {
309            return Err(Error::Format(
310                "first two bytes are not an SOI marker".to_owned(),
311            ));
312        }
313
314        let mut previous_marker = Marker::SOI;
315        let mut pending_marker = None;
316        let mut scans_processed = 0;
317        let mut planes = vec![
318            Vec::<u8>::new();
319            self.frame
320                .as_ref()
321                .map_or(0, |frame| frame.components.len())
322        ];
323        let mut planes_u16 = vec![
324            Vec::<u16>::new();
325            self.frame
326                .as_ref()
327                .map_or(0, |frame| frame.components.len())
328        ];
329
330        loop {
331            let marker = match pending_marker.take() {
332                Some(m) => m,
333                None => self.read_marker()?,
334            };
335
336            match marker {
337                // Frame header
338                Marker::SOF(..) => {
339                    // Section 4.10
340                    // "An image contains only one frame in the cases of sequential and
341                    //  progressive coding processes; an image contains multiple frames for the
342                    //  hierarchical mode."
343                    if self.frame.is_some() {
344                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
345                    }
346
347                    let frame = parse_sof(&mut self.reader, marker)?;
348                    let component_count = frame.components.len();
349
350                    if frame.is_differential {
351                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
352                    }
353                    if frame.entropy_coding == EntropyCoding::Arithmetic {
354                        return Err(Error::Unsupported(
355                            UnsupportedFeature::ArithmeticEntropyCoding,
356                        ));
357                    }
358                    if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless {
359                        return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
360                            frame.precision,
361                        )));
362                    }
363                    if !(2..=16).contains(&frame.precision) {
364                        return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
365                            frame.precision,
366                        )));
367                    }
368                    if component_count != 1 && component_count != 3 && component_count != 4 {
369                        return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(
370                            component_count as u8,
371                        )));
372                    }
373
374                    // Make sure we support the subsampling ratios used.
375                    let _ = Upsampler::new(
376                        &frame.components,
377                        frame.image_size.width,
378                        frame.image_size.height,
379                    )?;
380
381                    self.frame = Some(frame);
382
383                    if stop_after_metadata {
384                        return Ok(Vec::new());
385                    }
386
387                    planes = vec![Vec::new(); component_count];
388                    planes_u16 = vec![Vec::new(); component_count];
389                }
390
391                // Scan header
392                Marker::SOS => {
393                    if self.frame.is_none() {
394                        return Err(Error::Format("scan encountered before frame".to_owned()));
395                    }
396
397                    let frame = self.frame.clone().unwrap();
398                    let scan = parse_sos(&mut self.reader, &frame)?;
399
400                    if frame.coding_process == CodingProcess::DctProgressive
401                        && self.coefficients.is_empty()
402                    {
403                        self.coefficients = frame
404                            .components
405                            .iter()
406                            .map(|c| {
407                                let block_count =
408                                    c.block_size.width as usize * c.block_size.height as usize;
409                                vec![0; block_count * 64]
410                            })
411                            .collect();
412                    }
413
414                    if frame.coding_process == CodingProcess::Lossless {
415                        let (marker, data) = self.decode_scan_lossless(&frame, &scan)?;
416
417                        for (i, plane) in data
418                            .into_iter()
419                            .enumerate()
420                            .filter(|(_, plane)| !plane.is_empty())
421                        {
422                            planes_u16[i] = plane;
423                        }
424                        pending_marker = marker;
425                    } else {
426                        // This was previously buggy, so let's explain the log here a bit. When a
427                        // progressive frame is encoded then the coefficients (DC, AC) of each
428                        // component (=color plane) can be split amongst scans. In particular it can
429                        // happen or at least occurs in the wild that a scan contains coefficient 0 of
430                        // all components. If now one but not all components had all other coefficients
431                        // delivered in previous scans then such a scan contains all components but
432                        // completes only some of them! (This is technically NOT permitted for all
433                        // other coefficients as the standard dictates that scans with coefficients
434                        // other than the 0th must only contain ONE component so we would either
435                        // complete it or not. We may want to detect and error in case more component
436                        // are part of a scan than allowed.) What a weird edge case.
437                        //
438                        // But this means we track precisely which components get completed here.
439                        let mut finished = [false; MAX_COMPONENTS];
440
441                        if scan.successive_approximation_low == 0 {
442                            for (&i, component_finished) in
443                                scan.component_indices.iter().zip(&mut finished)
444                            {
445                                if self.coefficients_finished[i] == !0 {
446                                    continue;
447                                }
448                                for j in scan.spectral_selection.clone() {
449                                    self.coefficients_finished[i] |= 1 << j;
450                                }
451                                if self.coefficients_finished[i] == !0 {
452                                    *component_finished = true;
453                                }
454                            }
455                        }
456
457                        let preference =
458                            Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
459
460                        let (marker, data) = worker_scope
461                            .get_or_init_worker(preference, |worker| {
462                                self.decode_scan(&frame, &scan, worker, &finished)
463                            })?;
464
465                        if let Some(data) = data {
466                            for (i, plane) in data
467                                .into_iter()
468                                .enumerate()
469                                .filter(|(_, plane)| !plane.is_empty())
470                            {
471                                if self.coefficients_finished[i] == !0 {
472                                    planes[i] = plane;
473                                }
474                            }
475                        }
476
477                        pending_marker = marker;
478                    }
479
480                    scans_processed += 1;
481                }
482
483                // Table-specification and miscellaneous markers
484                // Quantization table-specification
485                Marker::DQT => {
486                    let tables = parse_dqt(&mut self.reader)?;
487
488                    for (i, &table) in tables.iter().enumerate() {
489                        if let Some(table) = table {
490                            let mut unzigzagged_table = [0u16; 64];
491
492                            for j in 0..64 {
493                                unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
494                            }
495
496                            self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
497                        }
498                    }
499                }
500                // Huffman table-specification
501                Marker::DHT => {
502                    let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
503                    let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
504
505                    let current_dc_tables = mem::take(&mut self.dc_huffman_tables);
506                    self.dc_huffman_tables = dc_tables
507                        .into_iter()
508                        .zip(current_dc_tables)
509                        .map(|(a, b)| a.or(b))
510                        .collect();
511
512                    let current_ac_tables = mem::take(&mut self.ac_huffman_tables);
513                    self.ac_huffman_tables = ac_tables
514                        .into_iter()
515                        .zip(current_ac_tables)
516                        .map(|(a, b)| a.or(b))
517                        .collect();
518                }
519                // Arithmetic conditioning table-specification
520                Marker::DAC => {
521                    return Err(Error::Unsupported(
522                        UnsupportedFeature::ArithmeticEntropyCoding,
523                    ))
524                }
525                // Restart interval definition
526                Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
527                // Comment
528                Marker::COM => {
529                    let _comment = parse_com(&mut self.reader)?;
530                }
531                // Application data
532                Marker::APP(..) => {
533                    if let Some(data) = parse_app(&mut self.reader, marker)? {
534                        match data {
535                            AppData::Adobe(color_transform) => {
536                                self.adobe_color_transform = Some(color_transform)
537                            }
538                            AppData::Jfif => {
539                                // From the JFIF spec:
540                                // "The APP0 marker is used to identify a JPEG FIF file.
541                                //     The JPEG FIF APP0 marker is mandatory right after the SOI marker."
542                                // Some JPEGs in the wild does not follow this though, so we allow
543                                // JFIF headers anywhere APP0 markers are allowed.
544                                /*
545                                if previous_marker != Marker::SOI {
546                                    return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
547                                }
548                                */
549
550                                self.is_jfif = true;
551                            }
552                            AppData::Avi1 => self.is_mjpeg = true,
553                            AppData::Icc(icc) => self.icc_markers.push(icc),
554                            AppData::Exif(data) => self.exif_data = Some(data),
555                            AppData::Xmp(data) => self.xmp_data = Some(data),
556                            AppData::Psir(data) => self.psir_data = Some(data),
557                        }
558                    }
559                }
560                // Restart
561                Marker::RST(..) => {
562                    // Some encoders emit a final RST marker after entropy-coded data, which
563                    // decode_scan does not take care of. So if we encounter one, we ignore it.
564                    if previous_marker != Marker::SOS {
565                        return Err(Error::Format(
566                            "RST found outside of entropy-coded data".to_owned(),
567                        ));
568                    }
569                }
570
571                // Define number of lines
572                Marker::DNL => {
573                    // Section B.2.1
574                    // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
575                    if previous_marker != Marker::SOS || scans_processed != 1 {
576                        return Err(Error::Format(
577                            "DNL is only allowed immediately after the first scan".to_owned(),
578                        ));
579                    }
580
581                    return Err(Error::Unsupported(UnsupportedFeature::DNL));
582                }
583
584                // Hierarchical mode markers
585                Marker::DHP | Marker::EXP => {
586                    return Err(Error::Unsupported(UnsupportedFeature::Hierarchical))
587                }
588
589                // End of image
590                Marker::EOI => break,
591
592                _ => {
593                    return Err(Error::Format(format!(
594                        "{:?} marker found where not allowed",
595                        marker
596                    )))
597                }
598            }
599
600            previous_marker = marker;
601        }
602
603        if self.frame.is_none() {
604            return Err(Error::Format(
605                "end of image encountered before frame".to_owned(),
606            ));
607        }
608
609        let frame = self.frame.as_ref().unwrap();
610        let preference = Self::select_worker(frame, PreferWorkerKind::Multithreaded);
611
612        worker_scope.get_or_init_worker(preference, |worker| {
613            self.decode_planes(worker, planes, planes_u16)
614        })
615    }
616
617    fn decode_planes(
618        &mut self,
619        worker: &mut dyn Worker,
620        mut planes: Vec<Vec<u8>>,
621        planes_u16: Vec<Vec<u16>>,
622    ) -> Result<Vec<u8>> {
623        if self.frame.is_none() {
624            return Err(Error::Format(
625                "end of image encountered before frame".to_owned(),
626            ));
627        }
628
629        let frame = self.frame.as_ref().unwrap();
630
631        if frame
632            .components
633            .len()
634            .checked_mul(frame.output_size.width.into())
635            .and_then(|m| m.checked_mul(frame.output_size.height.into()))
636            .map_or(true, |m| self.decoding_buffer_size_limit < m)
637        {
638            return Err(Error::Format(
639                "size of decoded image exceeds maximum allowed size".to_owned(),
640            ));
641        }
642
643        // If we're decoding a progressive jpeg and a component is unfinished, render what we've got
644        if frame.coding_process == CodingProcess::DctProgressive
645            && self.coefficients.len() == frame.components.len()
646        {
647            for (i, component) in frame.components.iter().enumerate() {
648                // Only dealing with unfinished components
649                if self.coefficients_finished[i] == !0 {
650                    continue;
651                }
652
653                let quantization_table =
654                    match self.quantization_tables[component.quantization_table_index].clone() {
655                        Some(quantization_table) => quantization_table,
656                        None => continue,
657                    };
658
659                // Get the worker prepared
660                let row_data = RowData {
661                    index: i,
662                    component: component.clone(),
663                    quantization_table,
664                };
665                worker.start(row_data)?;
666
667                // Send the rows over to the worker and collect the result
668                let coefficients_per_mcu_row = usize::from(component.block_size.width)
669                    * usize::from(component.vertical_sampling_factor)
670                    * 64;
671
672                let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| {
673                    let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
674                    let row_coefficients =
675                        self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec();
676                    (i, row_coefficients)
677                });
678
679                // FIXME: additional potential work stealing opportunities for rayon case if we
680                // also internally can parallelize over components.
681                worker.append_rows(&mut tasks)?;
682                planes[i] = worker.get_result(i)?;
683            }
684        }
685
686        if frame.coding_process == CodingProcess::Lossless {
687            compute_image_lossless(frame, planes_u16)
688        } else {
689            compute_image(
690                &frame.components,
691                planes,
692                frame.output_size,
693                self.determine_color_transform(),
694            )
695        }
696    }
697
698    fn determine_color_transform(&self) -> ColorTransform {
699        if let Some(color_transform) = self.color_transform {
700            return color_transform;
701        }
702
703        let frame = self.frame.as_ref().unwrap();
704
705        if frame.components.len() == 1 {
706            return ColorTransform::Grayscale;
707        }
708
709        // Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/
710
711        if frame.components.len() == 3 {
712            match (
713                frame.components[0].identifier,
714                frame.components[1].identifier,
715                frame.components[2].identifier,
716            ) {
717                (1, 2, 3) => {
718                    return ColorTransform::YCbCr;
719                }
720                (1, 34, 35) => {
721                    return ColorTransform::JcsBgYcc;
722                }
723                (82, 71, 66) => {
724                    return ColorTransform::RGB;
725                }
726                (114, 103, 98) => {
727                    return ColorTransform::JcsBgRgb;
728                }
729                _ => {}
730            }
731
732            if self.is_jfif {
733                return ColorTransform::YCbCr;
734            }
735        }
736
737        if let Some(colour_transform) = self.adobe_color_transform {
738            match colour_transform {
739                AdobeColorTransform::Unknown => {
740                    if frame.components.len() == 3 {
741                        return ColorTransform::RGB;
742                    } else if frame.components.len() == 4 {
743                        return ColorTransform::CMYK;
744                    }
745                }
746                AdobeColorTransform::YCbCr => {
747                    return ColorTransform::YCbCr;
748                }
749                AdobeColorTransform::YCCK => {
750                    return ColorTransform::YCCK;
751                }
752            }
753        } else if frame.components.len() == 4 {
754            return ColorTransform::CMYK;
755        }
756
757        if frame.components.len() == 4 {
758            ColorTransform::YCCK
759        } else if frame.components.len() == 3 {
760            ColorTransform::YCbCr
761        } else {
762            ColorTransform::Unknown
763        }
764    }
765
766    fn read_marker(&mut self) -> Result<Marker> {
767        loop {
768            // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
769            // libjpeg allows this though and there are images in the wild utilising it, so we are
770            // forced to support this behavior.
771            // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
772            while read_u8(&mut self.reader)? != 0xFF {}
773
774            // Section B.1.1.2
775            // All markers are assigned two-byte codes: an X’FF’ byte followed by a
776            // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
777            // optionally be preceded by any number of fill bytes, which are bytes
778            // assigned code X’FF’.
779            let mut byte = read_u8(&mut self.reader)?;
780
781            // Section B.1.1.2
782            // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
783            while byte == 0xFF {
784                byte = read_u8(&mut self.reader)?;
785            }
786
787            if byte != 0x00 && byte != 0xFF {
788                return Ok(Marker::from_u8(byte).unwrap());
789            }
790        }
791    }
792
793#[allow(clippy::type_complexity)]
794    fn decode_scan(
795        &mut self,
796        frame: &FrameInfo,
797        scan: &ScanInfo,
798        worker: &mut dyn Worker,
799        finished: &[bool; MAX_COMPONENTS],
800    ) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
801        assert!(scan.component_indices.len() <= MAX_COMPONENTS);
802
803        let components: Vec<Component> = scan
804            .component_indices
805            .iter()
806            .map(|&i| frame.components[i].clone())
807            .collect();
808
809        // Verify that all required quantization tables has been set.
810        if components
811            .iter()
812            .any(|component| self.quantization_tables[component.quantization_table_index].is_none())
813        {
814            return Err(Error::Format("use of unset quantization table".to_owned()));
815        }
816
817        if self.is_mjpeg {
818            fill_default_mjpeg_tables(
819                scan,
820                &mut self.dc_huffman_tables,
821                &mut self.ac_huffman_tables,
822            );
823        }
824
825        // Verify that all required huffman tables has been set.
826        if scan.spectral_selection.start == 0
827            && scan
828                .dc_table_indices
829                .iter()
830                .any(|&i| self.dc_huffman_tables[i].is_none())
831        {
832            return Err(Error::Format(
833                "scan makes use of unset dc huffman table".to_owned(),
834            ));
835        }
836        if scan.spectral_selection.end > 1
837            && scan
838                .ac_table_indices
839                .iter()
840                .any(|&i| self.ac_huffman_tables[i].is_none())
841        {
842            return Err(Error::Format(
843                "scan makes use of unset ac huffman table".to_owned(),
844            ));
845        }
846
847        // Prepare the worker thread for the work to come.
848        for (i, component) in components.iter().enumerate() {
849            if finished[i] {
850                let row_data = RowData {
851                    index: i,
852                    component: component.clone(),
853                    quantization_table: self.quantization_tables
854                        [component.quantization_table_index]
855                        .clone()
856                        .unwrap(),
857                };
858
859                worker.start(row_data)?;
860            }
861        }
862
863        let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
864        let is_interleaved = components.len() > 1;
865        let mut dummy_block = [0i16; 64];
866        let mut huffman = HuffmanDecoder::new();
867        let mut dc_predictors = [0i16; MAX_COMPONENTS];
868        let mut mcus_left_until_restart = self.restart_interval;
869        let mut expected_rst_num = 0;
870        let mut eob_run = 0;
871        let mut mcu_row_coefficients = vec![vec![]; components.len()];
872
873        if !is_progressive {
874            for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
875                let coefficients_per_mcu_row = component.block_size.width as usize
876                    * component.vertical_sampling_factor as usize
877                    * 64;
878                mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row];
879            }
880        }
881
882        // 4.8.2
883        // When reading from the stream, if the data is non-interleaved then an MCU consists of
884        // exactly one block (effectively a 1x1 sample).
885        let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
886            let horizontal = components
887                .iter()
888                .map(|component| component.horizontal_sampling_factor as u16)
889                .collect::<Vec<_>>();
890            let vertical = components
891                .iter()
892                .map(|component| component.vertical_sampling_factor as u16)
893                .collect::<Vec<_>>();
894            (horizontal, vertical)
895        } else {
896            (vec![1], vec![1])
897        };
898
899        // This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
900        // the MCUs will be exactly the block count.
901        let (max_mcu_x, max_mcu_y) = if is_interleaved {
902            (frame.mcu_size.width, frame.mcu_size.height)
903        } else {
904            (
905                components[0].block_size.width,
906                components[0].block_size.height,
907            )
908        };
909
910        for mcu_y in 0..max_mcu_y {
911            if mcu_y * 8 >= frame.image_size.height {
912                break;
913            }
914
915            for mcu_x in 0..max_mcu_x {
916                if mcu_x * 8 >= frame.image_size.width {
917                    break;
918                }
919
920                if self.restart_interval > 0 {
921                    if mcus_left_until_restart == 0 {
922                        match huffman.take_marker(&mut self.reader)? {
923                            Some(Marker::RST(n)) => {
924                                if n != expected_rst_num {
925                                    return Err(Error::Format(format!(
926                                        "found RST{} where RST{} was expected",
927                                        n, expected_rst_num
928                                    )));
929                                }
930
931                                huffman.reset();
932                                // Section F.2.1.3.1
933                                dc_predictors = [0i16; MAX_COMPONENTS];
934                                // Section G.1.2.2
935                                eob_run = 0;
936
937                                expected_rst_num = (expected_rst_num + 1) % 8;
938                                mcus_left_until_restart = self.restart_interval;
939                            }
940                            Some(marker) => {
941                                return Err(Error::Format(format!(
942                                    "found marker {:?} inside scan where RST{} was expected",
943                                    marker, expected_rst_num
944                                )))
945                            }
946                            None => {
947                                return Err(Error::Format(format!(
948                                    "no marker found where RST{} was expected",
949                                    expected_rst_num
950                                )))
951                            }
952                        }
953                    }
954
955                    mcus_left_until_restart -= 1;
956                }
957
958                for (i, component) in components.iter().enumerate() {
959                    for v_pos in 0..mcu_vertical_samples[i] {
960                        for h_pos in 0..mcu_horizontal_samples[i] {
961                            let coefficients = if is_progressive {
962                                let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
963                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
964                                let block_offset =
965                                    (block_y * component.block_size.width as usize + block_x) * 64;
966                                &mut self.coefficients[scan.component_indices[i]]
967                                    [block_offset..block_offset + 64]
968                            } else if finished[i] {
969                                // Because the worker thread operates in batches as if we were always interleaved, we
970                                // need to distinguish between a single-shot buffer and one that's currently in process
971                                // (for a non-interleaved) stream
972                                let mcu_batch_current_row = if is_interleaved {
973                                    0
974                                } else {
975                                    mcu_y % component.vertical_sampling_factor as u16
976                                };
977
978                                let block_y = (mcu_batch_current_row * mcu_vertical_samples[i]
979                                    + v_pos) as usize;
980                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
981                                let block_offset =
982                                    (block_y * component.block_size.width as usize + block_x) * 64;
983                                &mut mcu_row_coefficients[i][block_offset..block_offset + 64]
984                            } else {
985                                &mut dummy_block[..64]
986                            }
987                            .try_into()
988                            .unwrap();
989
990                            if scan.successive_approximation_high == 0 {
991                                decode_block(
992                                    &mut self.reader,
993                                    coefficients,
994                                    &mut huffman,
995                                    self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
996                                    self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
997                                    scan.spectral_selection.clone(),
998                                    scan.successive_approximation_low,
999                                    &mut eob_run,
1000                                    &mut dc_predictors[i],
1001                                )?;
1002                            } else {
1003                                decode_block_successive_approximation(
1004                                    &mut self.reader,
1005                                    coefficients,
1006                                    &mut huffman,
1007                                    self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
1008                                    scan.spectral_selection.clone(),
1009                                    scan.successive_approximation_low,
1010                                    &mut eob_run,
1011                                )?;
1012                            }
1013                        }
1014                    }
1015                }
1016            }
1017
1018            // Send the coefficients from this MCU row to the worker thread for dequantization and idct.
1019            for (i, component) in components.iter().enumerate() {
1020                if finished[i] {
1021                    // In the event of non-interleaved streams, if we're still building the buffer out,
1022                    // keep going; don't send it yet. We also need to ensure we don't skip over the last
1023                    // row(s) of the image.
1024                    if !is_interleaved
1025                        && (mcu_y + 1) * 8 < frame.image_size.height
1026                        && (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0
1027                    {
1028                        continue;
1029                    }
1030
1031                    let coefficients_per_mcu_row = component.block_size.width as usize
1032                        * component.vertical_sampling_factor as usize
1033                        * 64;
1034
1035                    let row_coefficients = if is_progressive {
1036                        // Because non-interleaved streams will have multiple MCU rows concatenated together,
1037                        // the row for calculating the offset is different.
1038                        let worker_mcu_y = if is_interleaved {
1039                            mcu_y
1040                        } else {
1041                            // Explicitly doing floor-division here
1042                            mcu_y / component.vertical_sampling_factor as u16
1043                        };
1044
1045                        let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
1046                        self.coefficients[scan.component_indices[i]]
1047                            [offset..offset + coefficients_per_mcu_row]
1048                            .to_vec()
1049                    } else {
1050                        mem::replace(
1051                            &mut mcu_row_coefficients[i],
1052                            vec![0i16; coefficients_per_mcu_row],
1053                        )
1054                    };
1055
1056                    // FIXME: additional potential work stealing opportunities for rayon case if we
1057                    // also internally can parallelize over components.
1058                    worker.append_row((i, row_coefficients))?;
1059                }
1060            }
1061        }
1062
1063        let mut marker = huffman.take_marker(&mut self.reader)?;
1064        while let Some(Marker::RST(_)) = marker {
1065            marker = self.read_marker().ok();
1066        }
1067
1068        if finished.iter().any(|&c| c) {
1069            // Retrieve all the data from the worker thread.
1070            let mut data = vec![Vec::new(); frame.components.len()];
1071
1072            for (i, &component_index) in scan.component_indices.iter().enumerate() {
1073                if finished[i] {
1074                    data[component_index] = worker.get_result(i)?;
1075                }
1076            }
1077
1078            Ok((marker, Some(data)))
1079        } else {
1080            Ok((marker, None))
1081        }
1082    }
1083}
1084
1085#[allow(clippy::too_many_arguments)]
1086fn decode_block<R: Read>(
1087    reader: &mut R,
1088    coefficients: &mut [i16; 64],
1089    huffman: &mut HuffmanDecoder,
1090    dc_table: Option<&HuffmanTable>,
1091    ac_table: Option<&HuffmanTable>,
1092    spectral_selection: Range<u8>,
1093    successive_approximation_low: u8,
1094    eob_run: &mut u16,
1095    dc_predictor: &mut i16,
1096) -> Result<()> {
1097    debug_assert_eq!(coefficients.len(), 64);
1098
1099    if spectral_selection.start == 0 {
1100        // Section F.2.2.1
1101        // Figure F.12
1102        let value = huffman.decode(reader, dc_table.unwrap())?;
1103        let diff = match value {
1104            0 => 0,
1105            1..=11 => huffman.receive_extend(reader, value)?,
1106            _ => {
1107                // Section F.1.2.1.1
1108                // Table F.1
1109                return Err(Error::Format(
1110                    "invalid DC difference magnitude category".to_owned(),
1111                ));
1112            }
1113        };
1114
1115        // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
1116        // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
1117        *dc_predictor = dc_predictor.wrapping_add(diff);
1118        coefficients[0] = *dc_predictor << successive_approximation_low;
1119    }
1120
1121    let mut index = cmp::max(spectral_selection.start, 1);
1122
1123    if index < spectral_selection.end && *eob_run > 0 {
1124        *eob_run -= 1;
1125        return Ok(());
1126    }
1127
1128    // Section F.1.2.2.1
1129    while index < spectral_selection.end {
1130        if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
1131            index += run;
1132
1133            if index >= spectral_selection.end {
1134                break;
1135            }
1136
1137            coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
1138            index += 1;
1139        } else {
1140            let byte = huffman.decode(reader, ac_table.unwrap())?;
1141            let r = byte >> 4;
1142            let s = byte & 0x0f;
1143
1144            if s == 0 {
1145                match r {
1146                    15 => index += 16, // Run length of 16 zero coefficients.
1147                    _ => {
1148                        *eob_run = (1 << r) - 1;
1149
1150                        if r > 0 {
1151                            *eob_run += huffman.get_bits(reader, r)?;
1152                        }
1153
1154                        break;
1155                    }
1156                }
1157            } else {
1158                index += r;
1159
1160                if index >= spectral_selection.end {
1161                    break;
1162                }
1163
1164                coefficients[UNZIGZAG[index as usize] as usize] =
1165                    huffman.receive_extend(reader, s)? << successive_approximation_low;
1166                index += 1;
1167            }
1168        }
1169    }
1170
1171    Ok(())
1172}
1173
1174fn decode_block_successive_approximation<R: Read>(
1175    reader: &mut R,
1176    coefficients: &mut [i16; 64],
1177    huffman: &mut HuffmanDecoder,
1178    ac_table: Option<&HuffmanTable>,
1179    spectral_selection: Range<u8>,
1180    successive_approximation_low: u8,
1181    eob_run: &mut u16,
1182) -> Result<()> {
1183    debug_assert_eq!(coefficients.len(), 64);
1184
1185    let bit = 1 << successive_approximation_low;
1186
1187    if spectral_selection.start == 0 {
1188        // Section G.1.2.1
1189
1190        if huffman.get_bits(reader, 1)? == 1 {
1191            coefficients[0] |= bit;
1192        }
1193    } else {
1194        // Section G.1.2.3
1195
1196        if *eob_run > 0 {
1197            *eob_run -= 1;
1198            refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
1199            return Ok(());
1200        }
1201
1202        let mut index = spectral_selection.start;
1203
1204        while index < spectral_selection.end {
1205            let byte = huffman.decode(reader, ac_table.unwrap())?;
1206            let r = byte >> 4;
1207            let s = byte & 0x0f;
1208
1209            let mut zero_run_length = r;
1210            let mut value = 0;
1211
1212            match s {
1213                0 => {
1214                    match r {
1215                        15 => {
1216                            // Run length of 16 zero coefficients.
1217                            // We don't need to do anything special here, zero_run_length is 15
1218                            // and then value (which is zero) gets written, resulting in 16
1219                            // zero coefficients.
1220                        }
1221                        _ => {
1222                            *eob_run = (1 << r) - 1;
1223
1224                            if r > 0 {
1225                                *eob_run += huffman.get_bits(reader, r)?;
1226                            }
1227
1228                            // Force end of block.
1229                            zero_run_length = 64;
1230                        }
1231                    }
1232                }
1233                1 => {
1234                    if huffman.get_bits(reader, 1)? == 1 {
1235                        value = bit;
1236                    } else {
1237                        value = -bit;
1238                    }
1239                }
1240                _ => return Err(Error::Format("unexpected huffman code".to_owned())),
1241            }
1242
1243            let range = Range {
1244                start: index,
1245                end: spectral_selection.end,
1246            };
1247            index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
1248
1249            if value != 0 {
1250                coefficients[UNZIGZAG[index as usize] as usize] = value;
1251            }
1252
1253            index += 1;
1254        }
1255    }
1256
1257    Ok(())
1258}
1259
1260fn refine_non_zeroes<R: Read>(
1261    reader: &mut R,
1262    coefficients: &mut [i16; 64],
1263    huffman: &mut HuffmanDecoder,
1264    range: Range<u8>,
1265    zrl: u8,
1266    bit: i16,
1267) -> Result<u8> {
1268    debug_assert_eq!(coefficients.len(), 64);
1269
1270    let last = range.end - 1;
1271    let mut zero_run_length = zrl;
1272
1273    for i in range {
1274        let index = UNZIGZAG[i as usize] as usize;
1275
1276        let coefficient = &mut coefficients[index];
1277
1278        if *coefficient == 0 {
1279            if zero_run_length == 0 {
1280                return Ok(i);
1281            }
1282
1283            zero_run_length -= 1;
1284        } else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 {
1285            if *coefficient > 0 {
1286                *coefficient = coefficient
1287                    .checked_add(bit)
1288                    .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
1289            } else {
1290                *coefficient = coefficient
1291                    .checked_sub(bit)
1292                    .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
1293            }
1294        }
1295    }
1296
1297    Ok(last)
1298}
1299
1300fn compute_image(
1301    components: &[Component],
1302    mut data: Vec<Vec<u8>>,
1303    output_size: Dimensions,
1304    color_transform: ColorTransform,
1305) -> Result<Vec<u8>> {
1306    if data.is_empty() || data.iter().any(Vec::is_empty) {
1307        return Err(Error::Format("not all components have data".to_owned()));
1308    }
1309
1310    if components.len() == 1 {
1311        let component = &components[0];
1312        let mut decoded: Vec<u8> = data.remove(0);
1313
1314        let width = component.size.width as usize;
1315        let height = component.size.height as usize;
1316        let size = width * height;
1317        let line_stride = component.block_size.width as usize * component.dct_scale;
1318
1319        // if the image width is a multiple of the block size,
1320        // then we don't have to move bytes in the decoded data
1321        if usize::from(output_size.width) != line_stride {
1322            // The first line already starts at index 0, so we need to move only lines 1..height
1323            // We move from the top down because all lines are being moved backwards.
1324            for y in 1..height {
1325                let destination_idx = y * width;
1326                let source_idx = y * line_stride;
1327                let end = source_idx + width;
1328                decoded.copy_within(source_idx..end, destination_idx);
1329            }
1330        }
1331        decoded.resize(size, 0);
1332        Ok(decoded)
1333    } else {
1334        compute_image_parallel(components, data, output_size, color_transform)
1335    }
1336}
1337
1338#[allow(clippy::type_complexity)]
1339pub(crate) fn choose_color_convert_func(
1340    component_count: usize,
1341    color_transform: ColorTransform,
1342) -> Result<fn(&[Vec<u8>], &mut [u8])> {
1343    match component_count {
1344        3 => match color_transform {
1345            ColorTransform::None => Ok(color_no_convert),
1346            ColorTransform::Grayscale => Err(Error::Format(
1347                "Invalid number of channels (3) for Grayscale data".to_string(),
1348            )),
1349            ColorTransform::RGB => Ok(color_convert_line_rgb),
1350            ColorTransform::YCbCr => Ok(color_convert_line_ycbcr),
1351            ColorTransform::CMYK => Err(Error::Format(
1352                "Invalid number of channels (3) for CMYK data".to_string(),
1353            )),
1354            ColorTransform::YCCK => Err(Error::Format(
1355                "Invalid number of channels (3) for YCCK data".to_string(),
1356            )),
1357            ColorTransform::JcsBgYcc => Err(Error::Unsupported(
1358                UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
1359            )),
1360            ColorTransform::JcsBgRgb => Err(Error::Unsupported(
1361                UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
1362            )),
1363            ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
1364        },
1365        4 => match color_transform {
1366            ColorTransform::None => Ok(color_no_convert),
1367            ColorTransform::Grayscale => Err(Error::Format(
1368                "Invalid number of channels (4) for Grayscale data".to_string(),
1369            )),
1370            ColorTransform::RGB => Err(Error::Format(
1371                "Invalid number of channels (4) for RGB data".to_string(),
1372            )),
1373            ColorTransform::YCbCr => Err(Error::Format(
1374                "Invalid number of channels (4) for YCbCr data".to_string(),
1375            )),
1376            ColorTransform::CMYK => Ok(color_convert_line_cmyk),
1377            ColorTransform::YCCK => Ok(color_convert_line_ycck),
1378
1379            ColorTransform::JcsBgYcc => Err(Error::Unsupported(
1380                UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
1381            )),
1382            ColorTransform::JcsBgRgb => Err(Error::Unsupported(
1383                UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
1384            )),
1385            ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
1386        },
1387        _ => panic!(),
1388    }
1389}
1390
1391fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) {
1392    assert!(data.len() == 3, "wrong number of components for rgb");
1393    let [r, g, b]: &[Vec<u8>; 3] = data.try_into().unwrap();
1394    for (((chunk, r), g), b) in output
1395        .chunks_exact_mut(3)
1396        .zip(r.iter())
1397        .zip(g.iter())
1398        .zip(b.iter())
1399    {
1400        chunk[0] = *r;
1401        chunk[1] = *g;
1402        chunk[2] = *b;
1403    }
1404}
1405
1406fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) {
1407    assert!(data.len() == 3, "wrong number of components for ycbcr");
1408    let [y, cb, cr]: &[_; 3] = data.try_into().unwrap();
1409
1410    #[cfg(not(feature = "platform_independent"))]
1411    let arch_specific_pixels = {
1412        if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() {
1413            #[allow(unsafe_code)]
1414            unsafe {
1415                ycbcr(y, cb, cr, output)
1416            }
1417        } else {
1418            0
1419        }
1420    };
1421
1422    #[cfg(feature = "platform_independent")]
1423    let arch_specific_pixels = 0;
1424
1425    for (((chunk, y), cb), cr) in output
1426        .chunks_exact_mut(3)
1427        .zip(y.iter())
1428        .zip(cb.iter())
1429        .zip(cr.iter())
1430        .skip(arch_specific_pixels)
1431    {
1432        let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr);
1433        chunk[0] = r;
1434        chunk[1] = g;
1435        chunk[2] = b;
1436    }
1437}
1438
1439fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) {
1440    assert!(data.len() == 4, "wrong number of components for ycck");
1441    let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
1442
1443    for ((((chunk, c), m), y), k) in output
1444        .chunks_exact_mut(4)
1445        .zip(c.iter())
1446        .zip(m.iter())
1447        .zip(y.iter())
1448        .zip(k.iter())
1449    {
1450        let (r, g, b) = ycbcr_to_rgb(*c, *m, *y);
1451        chunk[0] = r;
1452        chunk[1] = g;
1453        chunk[2] = b;
1454        chunk[3] = 255 - *k;
1455    }
1456}
1457
1458fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) {
1459    assert!(data.len() == 4, "wrong number of components for cmyk");
1460    let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
1461
1462    for ((((chunk, c), m), y), k) in output
1463        .chunks_exact_mut(4)
1464        .zip(c.iter())
1465        .zip(m.iter())
1466        .zip(y.iter())
1467        .zip(k.iter())
1468    {
1469        chunk[0] = 255 - c;
1470        chunk[1] = 255 - m;
1471        chunk[2] = 255 - y;
1472        chunk[3] = 255 - k;
1473    }
1474}
1475
1476fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) {
1477    let mut output_iter = output.iter_mut();
1478
1479    for pixel in data {
1480        for d in pixel {
1481            *(output_iter.next().unwrap()) = *d;
1482        }
1483    }
1484}
1485
1486const FIXED_POINT_OFFSET: i32 = 20;
1487const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2;
1488
1489// ITU-R BT.601
1490// Based on libjpeg-turbo's jdcolext.c
1491fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
1492    let y = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF;
1493    let cb = cb as i32 - 128;
1494    let cr = cr as i32 - 128;
1495
1496    let r = clamp_fixed_point(y + stbi_f2f(1.40200) * cr);
1497    let g = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr);
1498    let b = clamp_fixed_point(y + stbi_f2f(1.77200) * cb);
1499    (r, g, b)
1500}
1501
1502fn stbi_f2f(x: f32) -> i32 {
1503    (x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32
1504}
1505
1506fn clamp_fixed_point(value: i32) -> u8 {
1507    (value >> FIXED_POINT_OFFSET).min(255).max(0) as u8
1508}