kurbo/
stroke.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// Copyright 2023 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

use core::{borrow::Borrow, f64::consts::PI};

use alloc::vec::Vec;

use smallvec::SmallVec;

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

use crate::{
    common::solve_quadratic, fit_to_bezpath, fit_to_bezpath_opt, offset::CubicOffset, Affine, Arc,
    BezPath, CubicBez, Line, ParamCurve, ParamCurveArclen, PathEl, PathSeg, Point, QuadBez, Vec2,
};

/// Defines the connection between two segments of a stroke.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Join {
    /// A straight line connecting the segments.
    Bevel,
    /// The segments are extended to their natural intersection point.
    Miter,
    /// An arc between the segments.
    Round,
}

/// Defines the shape to be drawn at the ends of a stroke.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Cap {
    /// Flat cap.
    Butt,
    /// Square cap with dimensions equal to half the stroke width.
    Square,
    /// Rounded cap with radius equal to half the stroke width.
    Round,
}

/// Describes the visual style of a stroke.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Stroke {
    /// Width of the stroke.
    pub width: f64,
    /// Style for connecting segments of the stroke.
    pub join: Join,
    /// Limit for miter joins.
    pub miter_limit: f64,
    /// Style for capping the beginning of an open subpath.
    pub start_cap: Cap,
    /// Style for capping the end of an open subpath.
    pub end_cap: Cap,
    /// Lengths of dashes in alternating on/off order.
    pub dash_pattern: Dashes,
    /// Offset of the first dash.
    pub dash_offset: f64,
}

/// Options for path stroking.
pub struct StrokeOpts {
    opt_level: StrokeOptLevel,
}

/// Optimization level for computing
pub enum StrokeOptLevel {
    /// Adaptively subdivide segments in half.
    Subdivide,
    /// Compute optimized subdivision points to minimize error.
    Optimized,
}

impl Default for StrokeOpts {
    fn default() -> Self {
        let opt_level = StrokeOptLevel::Subdivide;
        StrokeOpts { opt_level }
    }
}

impl Default for Stroke {
    fn default() -> Self {
        Self {
            width: 1.0,
            join: Join::Round,
            miter_limit: 4.0,
            start_cap: Cap::Round,
            end_cap: Cap::Round,
            dash_pattern: Default::default(),
            dash_offset: 0.0,
        }
    }
}

impl Stroke {
    /// Creates a new stroke with the specified width.
    pub fn new(width: f64) -> Self {
        Self {
            width,
            ..Default::default()
        }
    }

    /// Builder method for setting the join style.
    pub fn with_join(mut self, join: Join) -> Self {
        self.join = join;
        self
    }

    /// Builder method for setting the limit for miter joins.
    pub fn with_miter_limit(mut self, limit: f64) -> Self {
        self.miter_limit = limit;
        self
    }

    /// Builder method for setting the cap style for the start of the stroke.
    pub fn with_start_cap(mut self, cap: Cap) -> Self {
        self.start_cap = cap;
        self
    }

    /// Builder method for setting the cap style for the end of the stroke.
    pub fn with_end_cap(mut self, cap: Cap) -> Self {
        self.end_cap = cap;
        self
    }

    /// Builder method for setting the cap style.
    pub fn with_caps(mut self, cap: Cap) -> Self {
        self.start_cap = cap;
        self.end_cap = cap;
        self
    }

    /// Builder method for setting the dashing parameters.
    pub fn with_dashes<P>(mut self, offset: f64, pattern: P) -> Self
    where
        P: IntoIterator,
        P::Item: Borrow<f64>,
    {
        self.dash_offset = offset;
        self.dash_pattern.clear();
        self.dash_pattern
            .extend(pattern.into_iter().map(|dash| *dash.borrow()));
        self
    }
}

impl StrokeOpts {
    /// Set optimization level for computing stroke outlines.
    pub fn opt_level(mut self, opt_level: StrokeOptLevel) -> Self {
        self.opt_level = opt_level;
        self
    }
}

/// Collection of values representing lengths in a dash pattern.
pub type Dashes = SmallVec<[f64; 4]>;

/// Internal structure used for creating strokes.
#[derive(Default)]
struct StrokeCtx {
    // As a possible future optimization, we might not need separate storage
    // for forward and backward paths, we can add forward to the output in-place.
    // However, this structure is clearer and the cost fairly modest.
    output: BezPath,
    forward_path: BezPath,
    backward_path: BezPath,
    start_pt: Point,
    start_norm: Vec2,
    start_tan: Vec2,
    last_pt: Point,
    last_tan: Vec2,
    // Precomputation of the join threshold, to optimize per-join logic.
    // If hypot < (hypot + dot) * join_thresh, omit join altogether.
    join_thresh: f64,
}

/// Expand a stroke into a fill.
///
/// The `tolerance` parameter controls the accuracy of the result. In general,
/// the number of subdivisions in the output scales to the -1/6 power of the
/// parameter, for example making it 1/64 as big generates twice as many
/// segments. The appropriate value depends on the application; if the result
/// of the stroke will be scaled up, a smaller value is needed.
///
/// This method attempts a fairly high degree of correctness, but ultimately
/// is based on computing parallel curves and adding joins and caps, rather than
/// computing the rigorously correct parallel sweep (which requires evolutes in
/// the general case). See [Nehab 2020] for more discussion.
///
/// [Nehab 2020]: https://dl.acm.org/doi/10.1145/3386569.3392392
pub fn stroke(
    path: impl IntoIterator<Item = PathEl>,
    style: &Stroke,
    opts: &StrokeOpts,
    tolerance: f64,
) -> BezPath {
    if style.dash_pattern.is_empty() {
        stroke_undashed(path, style, tolerance, opts)
    } else {
        let dashed = dash(path.into_iter(), style.dash_offset, &style.dash_pattern);
        stroke_undashed(dashed, style, tolerance, opts)
    }
}

/// Version of stroke expansion for styles with no dashes.
fn stroke_undashed(
    path: impl IntoIterator<Item = PathEl>,
    style: &Stroke,
    tolerance: f64,
    opts: &StrokeOpts,
) -> BezPath {
    let mut ctx = StrokeCtx {
        join_thresh: 2.0 * tolerance / style.width,
        ..Default::default()
    };
    for el in path {
        let p0 = ctx.last_pt;
        match el {
            PathEl::MoveTo(p) => {
                ctx.finish(style);
                ctx.start_pt = p;
                ctx.last_pt = p;
            }
            PathEl::LineTo(p1) => {
                if p1 != p0 {
                    let tangent = p1 - p0;
                    ctx.do_join(style, tangent);
                    ctx.last_tan = tangent;
                    ctx.do_line(style, tangent, p1);
                }
            }
            PathEl::QuadTo(p1, p2) => {
                if p1 != p0 || p2 != p0 {
                    let q = QuadBez::new(p0, p1, p2);
                    let (tan0, tan1) = PathSeg::Quad(q).tangents();
                    ctx.do_join(style, tan0);
                    ctx.do_cubic(style, q.raise(), tolerance, opts);
                    ctx.last_tan = tan1;
                }
            }
            PathEl::CurveTo(p1, p2, p3) => {
                if p1 != p0 || p2 != p0 || p3 != p0 {
                    let c = CubicBez::new(p0, p1, p2, p3);
                    let (tan0, tan1) = PathSeg::Cubic(c).tangents();
                    ctx.do_join(style, tan0);
                    ctx.do_cubic(style, c, tolerance, opts);
                    ctx.last_tan = tan1;
                }
            }
            PathEl::ClosePath => {
                if p0 != ctx.start_pt {
                    let tangent = ctx.start_pt - p0;
                    ctx.do_join(style, tangent);
                    ctx.last_tan = tangent;
                    ctx.do_line(style, tangent, ctx.start_pt);
                }
                ctx.finish_closed(style);
            }
        }
    }
    ctx.finish(style);
    ctx.output
}

fn round_cap(out: &mut BezPath, tolerance: f64, center: Point, norm: Vec2) {
    round_join(out, tolerance, center, norm, PI);
}

fn round_join(out: &mut BezPath, tolerance: f64, center: Point, norm: Vec2, angle: f64) {
    let a = Affine::new([norm.x, norm.y, -norm.y, norm.x, center.x, center.y]);
    let arc = Arc::new(Point::ORIGIN, (1.0, 1.0), PI - angle, angle, 0.0);
    arc.to_cubic_beziers(tolerance, |p1, p2, p3| out.curve_to(a * p1, a * p2, a * p3));
}

fn round_join_rev(out: &mut BezPath, tolerance: f64, center: Point, norm: Vec2, angle: f64) {
    let a = Affine::new([norm.x, norm.y, norm.y, -norm.x, center.x, center.y]);
    let arc = Arc::new(Point::ORIGIN, (1.0, 1.0), PI - angle, angle, 0.0);
    arc.to_cubic_beziers(tolerance, |p1, p2, p3| out.curve_to(a * p1, a * p2, a * p3));
}

fn square_cap(out: &mut BezPath, close: bool, center: Point, norm: Vec2) {
    let a = Affine::new([norm.x, norm.y, -norm.y, norm.x, center.x, center.y]);
    out.line_to(a * Point::new(1.0, 1.0));
    out.line_to(a * Point::new(-1.0, 1.0));
    if close {
        out.close_path();
    } else {
        out.line_to(a * Point::new(-1.0, 0.0));
    }
}

fn extend_reversed(out: &mut BezPath, elements: &[PathEl]) {
    for i in (1..elements.len()).rev() {
        let end = elements[i - 1].end_point().unwrap();
        match elements[i] {
            PathEl::LineTo(_) => out.line_to(end),
            PathEl::QuadTo(p1, _) => out.quad_to(p1, end),
            PathEl::CurveTo(p1, p2, _) => out.curve_to(p2, p1, end),
            _ => unreachable!(),
        }
    }
}

fn fit_with_opts(co: &CubicOffset, tolerance: f64, opts: &StrokeOpts) -> BezPath {
    match opts.opt_level {
        StrokeOptLevel::Subdivide => fit_to_bezpath(co, tolerance),
        StrokeOptLevel::Optimized => fit_to_bezpath_opt(co, tolerance),
    }
}

impl StrokeCtx {
    /// Append forward and backward paths to output.
    fn finish(&mut self, style: &Stroke) {
        // TODO: scale
        let tolerance = 1e-3;
        if self.forward_path.is_empty() {
            return;
        }
        self.output.extend(&self.forward_path);
        let back_els = self.backward_path.elements();
        let return_p = back_els[back_els.len() - 1].end_point().unwrap();
        let d = self.last_pt - return_p;
        match style.end_cap {
            Cap::Butt => self.output.line_to(return_p),
            Cap::Round => round_cap(&mut self.output, tolerance, self.last_pt, d),
            Cap::Square => square_cap(&mut self.output, false, self.last_pt, d),
        }
        extend_reversed(&mut self.output, back_els);
        match style.start_cap {
            Cap::Butt => self.output.close_path(),
            Cap::Round => round_cap(&mut self.output, tolerance, self.start_pt, self.start_norm),
            Cap::Square => square_cap(&mut self.output, true, self.start_pt, self.start_norm),
        }

        self.forward_path.truncate(0);
        self.backward_path.truncate(0);
    }

    /// Finish a closed path
    fn finish_closed(&mut self, style: &Stroke) {
        if self.forward_path.is_empty() {
            return;
        }
        self.do_join(style, self.start_tan);
        self.output.extend(&self.forward_path);
        self.output.close_path();
        let back_els = self.backward_path.elements();
        let last_pt = back_els[back_els.len() - 1].end_point().unwrap();
        self.output.move_to(last_pt);
        extend_reversed(&mut self.output, back_els);
        self.output.close_path();
        self.forward_path.truncate(0);
        self.backward_path.truncate(0);
    }

    fn do_join(&mut self, style: &Stroke, tan0: Vec2) {
        // TODO: scale
        let tolerance = 1e-3;
        let scale = 0.5 * style.width / tan0.hypot();
        let norm = scale * Vec2::new(-tan0.y, tan0.x);
        let p0 = self.last_pt;
        if self.forward_path.elements().is_empty() {
            self.forward_path.move_to(p0 - norm);
            self.backward_path.move_to(p0 + norm);
            self.start_tan = tan0;
            self.start_norm = norm;
        } else {
            let ab = self.last_tan;
            let cd = tan0;
            let cross = ab.cross(cd);
            let dot = ab.dot(cd);
            let hypot = cross.hypot(dot);
            // possible TODO: a minor speedup could be squaring both sides
            if dot <= 0.0 || cross.abs() >= hypot * self.join_thresh {
                match style.join {
                    Join::Bevel => {
                        self.forward_path.line_to(p0 - norm);
                        self.backward_path.line_to(p0 + norm);
                    }
                    Join::Miter => {
                        if 2.0 * hypot < (hypot + dot) * style.miter_limit.powi(2) {
                            // TODO: maybe better to store last_norm or derive from path?
                            let last_scale = 0.5 * style.width / ab.hypot();
                            let last_norm = last_scale * Vec2::new(-ab.y, ab.x);
                            if cross > 0.0 {
                                let fp_last = p0 - last_norm;
                                let fp_this = p0 - norm;
                                let h = ab.cross(fp_this - fp_last) / cross;
                                let miter_pt = fp_this - cd * h;
                                self.forward_path.line_to(miter_pt);
                            } else if cross < 0.0 {
                                let fp_last = p0 + last_norm;
                                let fp_this = p0 + norm;
                                let h = ab.cross(fp_this - fp_last) / cross;
                                let miter_pt = fp_this - cd * h;
                                self.backward_path.line_to(miter_pt);
                            }
                        }
                        self.forward_path.line_to(p0 - norm);
                        self.backward_path.line_to(p0 + norm);
                    }
                    Join::Round => {
                        let angle = cross.atan2(dot);
                        if angle > 0.0 {
                            self.backward_path.line_to(p0 + norm);
                            round_join(&mut self.forward_path, tolerance, p0, norm, angle);
                        } else {
                            self.forward_path.line_to(p0 - norm);
                            round_join_rev(&mut self.backward_path, tolerance, p0, -norm, -angle);
                        }
                    }
                }
            }
        }
    }

    fn do_line(&mut self, style: &Stroke, tangent: Vec2, p1: Point) {
        let scale = 0.5 * style.width / tangent.hypot();
        let norm = scale * Vec2::new(-tangent.y, tangent.x);
        self.forward_path.line_to(p1 - norm);
        self.backward_path.line_to(p1 + norm);
        self.last_pt = p1;
    }

    fn do_cubic(&mut self, style: &Stroke, c: CubicBez, tolerance: f64, opts: &StrokeOpts) {
        // First, detect degenerate linear case

        // Ordinarily, this is the direction of the chord, but if the chord is very
        // short, we take the longer control arm.
        let chord = c.p3 - c.p0;
        let mut chord_ref = chord;
        let mut chord_ref_hypot2 = chord_ref.hypot2();
        let d01 = c.p1 - c.p0;
        if d01.hypot2() > chord_ref_hypot2 {
            chord_ref = d01;
            chord_ref_hypot2 = chord_ref.hypot2();
        }
        let d23 = c.p3 - c.p2;
        if d23.hypot2() > chord_ref_hypot2 {
            chord_ref = d23;
            chord_ref_hypot2 = chord_ref.hypot2();
        }
        // Project Bézier onto chord
        let p0 = c.p0.to_vec2().dot(chord_ref);
        let p1 = c.p1.to_vec2().dot(chord_ref);
        let p2 = c.p2.to_vec2().dot(chord_ref);
        let p3 = c.p3.to_vec2().dot(chord_ref);
        const ENDPOINT_D: f64 = 0.01;
        if p3 <= p0
            || p1 > p2
            || p1 < p0 + ENDPOINT_D * (p3 - p0)
            || p2 > p3 - ENDPOINT_D * (p3 - p0)
        {
            // potentially a cusp inside
            let x01 = d01.cross(chord_ref);
            let x23 = d23.cross(chord_ref);
            let x03 = chord.cross(chord_ref);
            let thresh = tolerance.powi(2) * chord_ref_hypot2;
            if x01 * x01 < thresh && x23 * x23 < thresh && x03 * x03 < thresh {
                // control points are nearly co-linear
                let midpoint = c.p0.midpoint(c.p3);
                // Mapping back from projection of reference chord
                let ref_vec = chord_ref / chord_ref_hypot2;
                let ref_pt = midpoint - 0.5 * (p0 + p3) * ref_vec;
                self.do_linear(style, c, [p0, p1, p2, p3], ref_pt, ref_vec);
                return;
            }
        }

        // A tuning parameter for regularization. A value too large may distort the curve,
        // while a value too small may fail to generate smooth curves. This is a somewhat
        // arbitrary value, and should be revisited.
        const DIM_TUNE: f64 = 0.25;
        let dimension = tolerance * DIM_TUNE;
        let co = CubicOffset::new_regularized(c, -0.5 * style.width, dimension);
        let forward = fit_with_opts(&co, tolerance, opts);
        self.forward_path.extend(forward.into_iter().skip(1));
        let co = CubicOffset::new_regularized(c, 0.5 * style.width, dimension);
        let backward = fit_with_opts(&co, tolerance, opts);
        self.backward_path.extend(backward.into_iter().skip(1));
        self.last_pt = c.p3;
    }

    /// Do a cubic which is actually linear.
    ///
    /// The `p` argument is the control points projected to the reference chord.
    /// The ref arguments are the inverse map of a projection back to the client
    /// coordinate space.
    fn do_linear(
        &mut self,
        style: &Stroke,
        c: CubicBez,
        p: [f64; 4],
        ref_pt: Point,
        ref_vec: Vec2,
    ) {
        // Always do round join, to model cusp as limit of finite curvature (see Nehab).
        let style = Stroke::new(style.width).with_join(Join::Round);
        // Tangents of endpoints (for connecting to joins)
        let (tan0, tan1) = PathSeg::Cubic(c).tangents();
        self.last_tan = tan0;
        // find cusps
        let c0 = p[1] - p[0];
        let c1 = 2.0 * p[2] - 4.0 * p[1] + 2.0 * p[0];
        let c2 = p[3] - 3.0 * p[2] + 3.0 * p[1] - p[0];
        let roots = solve_quadratic(c0, c1, c2);
        // discard cusps right at endpoints
        const EPSILON: f64 = 1e-6;
        for t in roots {
            if t > EPSILON && t < 1.0 - EPSILON {
                let mt = 1.0 - t;
                let z = mt * (mt * mt * p[0] + 3.0 * t * (mt * p[1] + t * p[2])) + t * t * t * p[3];
                let p = ref_pt + z * ref_vec;
                let tan = p - self.last_pt;
                self.do_join(&style, tan);
                self.do_line(&style, tan, p);
                self.last_tan = tan;
            }
        }
        let tan = c.p3 - self.last_pt;
        self.do_join(&style, tan);
        self.do_line(&style, tan, c.p3);
        self.last_tan = tan;
        self.do_join(&style, tan1);
    }
}

/// An implementation of dashing as an iterator-to-iterator transformation.
#[doc(hidden)]
pub struct DashIterator<'a, T> {
    inner: T,
    input_done: bool,
    closepath_pending: bool,
    dashes: &'a [f64],
    dash_ix: usize,
    init_dash_ix: usize,
    init_dash_remaining: f64,
    init_is_active: bool,
    is_active: bool,
    state: DashState,
    current_seg: PathSeg,
    t: f64,
    dash_remaining: f64,
    seg_remaining: f64,
    start_pt: Point,
    last_pt: Point,
    stash: Vec<PathEl>,
    stash_ix: usize,
}

#[derive(PartialEq, Eq)]
enum DashState {
    NeedInput,
    ToStash,
    Working,
    FromStash,
}

impl<'a, T: Iterator<Item = PathEl>> Iterator for DashIterator<'a, T> {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        loop {
            match self.state {
                DashState::NeedInput => {
                    if self.input_done {
                        return None;
                    }
                    self.get_input();
                    if self.input_done {
                        return None;
                    }
                    self.state = DashState::ToStash;
                }
                DashState::ToStash => {
                    if let Some(el) = self.step() {
                        self.stash.push(el);
                    }
                }
                DashState::Working => {
                    if let Some(el) = self.step() {
                        return Some(el);
                    }
                }
                DashState::FromStash => {
                    if let Some(el) = self.stash.get(self.stash_ix) {
                        self.stash_ix += 1;
                        return Some(*el);
                    } else {
                        self.stash.clear();
                        self.stash_ix = 0;
                        if self.input_done {
                            return None;
                        }
                        if self.closepath_pending {
                            self.closepath_pending = false;
                            self.state = DashState::NeedInput;
                        } else {
                            self.state = DashState::ToStash;
                        }
                    }
                }
            }
        }
    }
}

fn seg_to_el(el: &PathSeg) -> PathEl {
    match el {
        PathSeg::Line(l) => PathEl::LineTo(l.p1),
        PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2),
        PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3),
    }
}

const DASH_ACCURACY: f64 = 1e-6;

/// Create a new dashing iterator.
///
/// Handling of dashes is fairly orthogonal to stroke expansion. This iterator
/// is an internal detail of the stroke expansion logic, but is also available
/// separately, and is expected to be useful when doing stroke expansion on
/// GPU.
///
/// It is implemented as an iterator-to-iterator transform. Because it consumes
/// the input sequentially and produces consistent output with correct joins,
/// it requires internal state and may allocate.
///
/// Accuracy is currently hard-coded to 1e-6. This is better than generally
/// expected, and care is taken to get cusps correct, among other things.
pub fn dash<'a>(
    inner: impl Iterator<Item = PathEl> + 'a,
    dash_offset: f64,
    dashes: &'a [f64],
) -> impl Iterator<Item = PathEl> + 'a {
    dash_impl(inner, dash_offset, dashes)
}

// This is only a separate function to make `DashIterator::new()` typecheck.
fn dash_impl<T: Iterator<Item = PathEl>>(
    inner: T,
    dash_offset: f64,
    dashes: &[f64],
) -> DashIterator<T> {
    let mut dash_ix = 0;
    let mut dash_remaining = dashes[dash_ix] - dash_offset;
    let mut is_active = true;
    // Find place in dashes array for initial offset.
    while dash_remaining < 0.0 {
        dash_ix = (dash_ix + 1) % dashes.len();
        dash_remaining += dashes[dash_ix];
        is_active = !is_active;
    }
    DashIterator {
        inner,
        input_done: false,
        closepath_pending: false,
        dashes,
        dash_ix,
        init_dash_ix: dash_ix,
        init_dash_remaining: dash_remaining,
        init_is_active: is_active,
        is_active,
        state: DashState::NeedInput,
        current_seg: PathSeg::Line(Line::new(Point::ORIGIN, Point::ORIGIN)),
        t: 0.0,
        dash_remaining,
        seg_remaining: 0.0,
        start_pt: Point::ORIGIN,
        last_pt: Point::ORIGIN,
        stash: Vec::new(),
        stash_ix: 0,
    }
}

impl<'a, T: Iterator<Item = PathEl>> DashIterator<'a, T> {
    #[doc(hidden)]
    #[deprecated(since = "0.10.4", note = "use dash() instead")]
    pub fn new(inner: T, dash_offset: f64, dashes: &'a [f64]) -> Self {
        dash_impl(inner, dash_offset, dashes)
    }

    fn get_input(&mut self) {
        loop {
            if self.closepath_pending {
                self.handle_closepath();
                break;
            }
            let Some(next_el) = self.inner.next() else {
                self.input_done = true;
                self.state = DashState::FromStash;
                return;
            };
            let p0 = self.last_pt;
            match next_el {
                PathEl::MoveTo(p) => {
                    if !self.stash.is_empty() {
                        self.state = DashState::FromStash;
                    }
                    self.start_pt = p;
                    self.last_pt = p;
                    self.reset_phase();
                    continue;
                }
                PathEl::LineTo(p1) => {
                    let l = Line::new(p0, p1);
                    self.seg_remaining = l.arclen(DASH_ACCURACY);
                    self.current_seg = PathSeg::Line(l);
                    self.last_pt = p1;
                }
                PathEl::QuadTo(p1, p2) => {
                    let q = QuadBez::new(p0, p1, p2);
                    self.seg_remaining = q.arclen(DASH_ACCURACY);
                    self.current_seg = PathSeg::Quad(q);
                    self.last_pt = p2;
                }
                PathEl::CurveTo(p1, p2, p3) => {
                    let c = CubicBez::new(p0, p1, p2, p3);
                    self.seg_remaining = c.arclen(DASH_ACCURACY);
                    self.current_seg = PathSeg::Cubic(c);
                    self.last_pt = p3;
                }
                PathEl::ClosePath => {
                    self.closepath_pending = true;
                    if p0 != self.start_pt {
                        let l = Line::new(p0, self.start_pt);
                        self.seg_remaining = l.arclen(DASH_ACCURACY);
                        self.current_seg = PathSeg::Line(l);
                        self.last_pt = self.start_pt;
                    } else {
                        self.handle_closepath();
                    }
                }
            }
            break;
        }
        self.t = 0.0;
    }

    /// Move arc length forward to next event.
    fn step(&mut self) -> Option<PathEl> {
        let mut result = None;
        if self.state == DashState::ToStash && self.stash.is_empty() {
            if self.is_active {
                result = Some(PathEl::MoveTo(self.current_seg.start()));
            } else {
                self.state = DashState::Working;
            }
        } else if self.dash_remaining < self.seg_remaining {
            // next transition is a dash transition
            let seg = self.current_seg.subsegment(self.t..1.0);
            let t1 = seg.inv_arclen(self.dash_remaining, DASH_ACCURACY);
            if self.is_active {
                let subseg = seg.subsegment(0.0..t1);
                result = Some(seg_to_el(&subseg));
                self.state = DashState::Working;
            } else {
                let p = seg.eval(t1);
                result = Some(PathEl::MoveTo(p));
            }
            self.is_active = !self.is_active;
            self.t += t1 * (1.0 - self.t);
            self.seg_remaining -= self.dash_remaining;
            self.dash_ix += 1;
            if self.dash_ix == self.dashes.len() {
                self.dash_ix = 0;
            }
            self.dash_remaining = self.dashes[self.dash_ix];
        } else {
            if self.is_active {
                let seg = self.current_seg.subsegment(self.t..1.0);
                result = Some(seg_to_el(&seg));
            }
            self.dash_remaining -= self.seg_remaining;
            self.get_input();
        }
        result
    }

    fn handle_closepath(&mut self) {
        if self.state == DashState::ToStash {
            // Have looped back without breaking a dash, just play it back
            self.stash.push(PathEl::ClosePath);
        } else if self.is_active {
            // connect with path in stash, skip MoveTo.
            self.stash_ix = 1;
        }
        self.state = DashState::FromStash;
        self.reset_phase();
    }

    fn reset_phase(&mut self) {
        self.dash_ix = self.init_dash_ix;
        self.dash_remaining = self.init_dash_remaining;
        self.is_active = self.init_is_active;
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        dash, segments, stroke, Cap::Butt, CubicBez, Join::Miter, Line, PathSeg, Shape, Stroke,
    };

    // A degenerate stroke with a cusp at the endpoint.
    #[test]
    fn pathological_stroke() {
        let curve = CubicBez::new(
            (602.469, 286.585),
            (641.975, 286.585),
            (562.963, 286.585),
            (562.963, 286.585),
        );
        let path = curve.into_path(0.1);
        let stroke_style = Stroke::new(1.);
        let stroked = stroke(path, &stroke_style, &Default::default(), 0.001);
        assert!(stroked.is_finite());
    }

    // Test cases adapted from https://github.com/linebender/vello/pull/388
    #[test]
    fn broken_strokes() {
        let broken_cubics = [
            [
                (465.24423, 107.11105),
                (475.50754, 107.11105),
                (475.50754, 107.11105),
                (475.50754, 107.11105),
            ],
            [(0., -0.01), (128., 128.001), (128., -0.01), (0., 128.001)], // Near-cusp
            [(0., 0.), (0., -10.), (0., -10.), (0., 10.)],                // Flat line with 180
            [(10., 0.), (0., 0.), (20., 0.), (10., 0.)],                  // Flat line with 2 180s
            [(39., -39.), (40., -40.), (40., -40.), (0., 0.)],            // Flat diagonal with 180
            [(40., 40.), (0., 0.), (200., 200.), (0., 0.)],               // Diag w/ an internal 180
            [(0., 0.), (1e-2, 0.), (-1e-2, 0.), (0., 0.)],                // Circle
            // Flat line with no turns:
            [
                (400.75, 100.05),
                (400.75, 100.05),
                (100.05, 300.95),
                (100.05, 300.95),
            ],
            [(0.5, 0.), (0., 0.), (20., 0.), (10., 0.)], // Flat line with 2 180s
            [(10., 0.), (0., 0.), (10., 0.), (10., 0.)], // Flat line with a 180
        ];
        let stroke_style = Stroke::new(30.).with_caps(Butt).with_join(Miter);
        for cubic in &broken_cubics {
            let path = CubicBez::new(cubic[0], cubic[1], cubic[2], cubic[3]).into_path(0.1);
            let stroked = stroke(path, &stroke_style, &Default::default(), 0.001);
            assert!(stroked.is_finite());
        }
    }

    #[test]
    fn dash_sequence() {
        let shape = Line::new((0.0, 0.0), (21.0, 0.0));
        let dashes = [1., 5., 2., 5.];
        let expansion = [
            PathSeg::Line(Line::new((6., 0.), (8., 0.))),
            PathSeg::Line(Line::new((13., 0.), (14., 0.))),
            PathSeg::Line(Line::new((19., 0.), (21., 0.))),
            PathSeg::Line(Line::new((0., 0.), (1., 0.))),
        ];
        let iter = segments(dash(shape.path_elements(0.), 0., &dashes));
        assert_eq!(iter.collect::<Vec<PathSeg>>(), expansion);
    }

    #[test]
    fn dash_sequence_offset() {
        // Same as dash_sequence, but with a dash offset
        // of 3, which skips the first dash and cuts into
        // the first gap.
        let shape = Line::new((0.0, 0.0), (21.0, 0.0));
        let dashes = [1., 5., 2., 5.];
        let expansion = [
            PathSeg::Line(Line::new((3., 0.), (5., 0.))),
            PathSeg::Line(Line::new((10., 0.), (11., 0.))),
            PathSeg::Line(Line::new((16., 0.), (18., 0.))),
        ];
        let iter = segments(dash(shape.path_elements(0.), 3., &dashes));
        assert_eq!(iter.collect::<Vec<PathSeg>>(), expansion);
    }
}