tiny_skia/painter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::*;
use tiny_skia_path::{PathStroker, Scalar, SCALAR_MAX};
use crate::geom::ScreenIntRect;
use crate::mask::SubMaskRef;
use crate::pipeline::{RasterPipelineBlitter, RasterPipelineBuilder};
use crate::pixmap::SubPixmapMut;
use crate::scan;
use crate::geom::IntSizeExt;
#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;
/// A path filling rule.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum FillRule {
/// Specifies that "inside" is computed by a non-zero sum of signed edge crossings.
Winding,
/// Specifies that "inside" is computed by an odd number of edge crossings.
EvenOdd,
}
impl Default for FillRule {
fn default() -> Self {
FillRule::Winding
}
}
/// Controls how a shape should be painted.
#[derive(Clone, PartialEq, Debug)]
pub struct Paint<'a> {
/// A paint shader.
///
/// Default: black color
pub shader: Shader<'a>,
/// Paint blending mode.
///
/// Default: SourceOver
pub blend_mode: BlendMode,
/// Enables anti-aliased painting.
///
/// Default: true
pub anti_alias: bool,
/// Forces the high quality/precision rendering pipeline.
///
/// `tiny-skia`, just like Skia, has two rendering pipelines:
/// one uses `f32` and another one uses `u16`. `u16` one is usually way faster,
/// but less precise. Which can lead to slight differences.
///
/// By default, `tiny-skia` will choose the pipeline automatically,
/// depending on a blending mode and other parameters.
/// But you can force the high quality one using this flag.
///
/// This feature is especially useful during testing.
///
/// Unlike high quality pipeline, the low quality one doesn't support all
/// rendering stages, therefore we cannot force it like hq one.
///
/// Default: false
pub force_hq_pipeline: bool,
}
impl Default for Paint<'_> {
fn default() -> Self {
Paint {
shader: Shader::SolidColor(Color::BLACK),
blend_mode: BlendMode::default(),
anti_alias: true,
force_hq_pipeline: false,
}
}
}
impl<'a> Paint<'a> {
/// Sets a paint source to a solid color.
pub fn set_color(&mut self, color: Color) {
self.shader = Shader::SolidColor(color);
}
/// Sets a paint source to a solid color.
///
/// `self.shader = Shader::SolidColor(Color::from_rgba8(50, 127, 150, 200));` shorthand.
pub fn set_color_rgba8(&mut self, r: u8, g: u8, b: u8, a: u8) {
self.set_color(Color::from_rgba8(r, g, b, a))
}
/// Checks that the paint source is a solid color.
pub fn is_solid_color(&self) -> bool {
matches!(self.shader, Shader::SolidColor(_))
}
}
impl Pixmap {
/// Draws a filled rectangle onto the pixmap.
///
/// See [`PixmapMut::fill_rect`](struct.PixmapMut.html#method.fill_rect) for details.
pub fn fill_rect(
&mut self,
rect: Rect,
paint: &Paint,
transform: Transform,
mask: Option<&Mask>,
) {
self.as_mut().fill_rect(rect, paint, transform, mask);
}
/// Draws a filled path onto the pixmap.
///
/// See [`PixmapMut::fill_path`](struct.PixmapMut.html#method.fill_path) for details.
pub fn fill_path(
&mut self,
path: &Path,
paint: &Paint,
fill_rule: FillRule,
transform: Transform,
mask: Option<&Mask>,
) {
self.as_mut()
.fill_path(path, paint, fill_rule, transform, mask);
}
/// Strokes a path.
///
/// See [`PixmapMut::stroke_path`](struct.PixmapMut.html#method.stroke_path) for details.
pub fn stroke_path(
&mut self,
path: &Path,
paint: &Paint,
stroke: &Stroke,
transform: Transform,
mask: Option<&Mask>,
) {
self.as_mut()
.stroke_path(path, paint, stroke, transform, mask);
}
/// Draws a `Pixmap` on top of the current `Pixmap`.
///
/// See [`PixmapMut::draw_pixmap`](struct.PixmapMut.html#method.draw_pixmap) for details.
pub fn draw_pixmap(
&mut self,
x: i32,
y: i32,
pixmap: PixmapRef,
paint: &PixmapPaint,
transform: Transform,
mask: Option<&Mask>,
) {
self.as_mut()
.draw_pixmap(x, y, pixmap, paint, transform, mask);
}
/// Applies a masks.
///
/// See [`PixmapMut::apply_mask`](struct.PixmapMut.html#method.apply_mask) for details.
pub fn apply_mask(&mut self, mask: &Mask) {
self.as_mut().apply_mask(mask);
}
}
impl PixmapMut<'_> {
// TODO: accept NonZeroRect?
/// Draws a filled rectangle onto the pixmap.
///
/// This function is usually slower than filling a rectangular path,
/// but it produces better results. Mainly it doesn't suffer from weird
/// clipping of horizontal/vertical edges.
///
/// Used mainly to render a pixmap onto a pixmap.
///
/// Returns `None` when there is nothing to fill or in case of a numeric overflow.
pub fn fill_rect(
&mut self,
rect: Rect,
paint: &Paint,
transform: Transform,
mask: Option<&Mask>,
) {
// TODO: we probably can use tiler for rect too
if transform.is_identity() && !DrawTiler::required(self.width(), self.height()) {
// TODO: ignore rects outside the pixmap
let clip = self.size().to_screen_int_rect(0, 0);
let mask = mask.map(|mask| mask.as_submask());
let mut subpix = self.as_subpixmap();
let mut blitter = match RasterPipelineBlitter::new(paint, mask, &mut subpix) {
Some(v) => v,
None => return, // nothing to do, all good
};
if paint.anti_alias {
scan::fill_rect_aa(&rect, &clip, &mut blitter);
} else {
scan::fill_rect(&rect, &clip, &mut blitter);
}
} else {
let path = PathBuilder::from_rect(rect);
self.fill_path(&path, paint, FillRule::Winding, transform, mask);
}
}
/// Draws a filled path onto the pixmap.
pub fn fill_path(
&mut self,
path: &Path,
paint: &Paint,
fill_rule: FillRule,
transform: Transform,
mask: Option<&Mask>,
) {
if transform.is_identity() {
// This is sort of similar to SkDraw::drawPath
// Skip empty paths and horizontal/vertical lines.
let path_bounds = path.bounds();
if path_bounds.width().is_nearly_zero() || path_bounds.height().is_nearly_zero() {
log::warn!("empty paths and horizontal/vertical lines cannot be filled");
return;
}
if is_too_big_for_math(path) {
log::warn!("path coordinates are too big");
return;
}
// TODO: ignore paths outside the pixmap
if let Some(tiler) = DrawTiler::new(self.width(), self.height()) {
let mut path = path.clone(); // TODO: avoid cloning
let mut paint = paint.clone();
for tile in tiler {
let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32));
path = match path.transform(ts) {
Some(v) => v,
None => {
log::warn!("path transformation failed");
return;
}
};
paint.shader.transform(ts);
let clip_rect = tile.size().to_screen_int_rect(0, 0);
let mut subpix = match self.subpixmap(tile.to_int_rect()) {
Some(v) => v,
None => continue, // technically unreachable
};
let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect()));
let mut blitter = match RasterPipelineBlitter::new(&paint, submask, &mut subpix)
{
Some(v) => v,
None => continue, // nothing to do, all good
};
// We're ignoring "errors" here, because `fill_path` will return `None`
// when rendering a tile that doesn't have a path on it.
// Which is not an error in this case.
if paint.anti_alias {
scan::path_aa::fill_path(&path, fill_rule, &clip_rect, &mut blitter);
} else {
scan::path::fill_path(&path, fill_rule, &clip_rect, &mut blitter);
}
let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32);
path = match path.transform(ts) {
Some(v) => v,
None => return, // technically unreachable
};
paint.shader.transform(ts);
}
} else {
let clip_rect = self.size().to_screen_int_rect(0, 0);
let submask = mask.map(|mask| mask.as_submask());
let mut subpix = self.as_subpixmap();
let mut blitter = match RasterPipelineBlitter::new(paint, submask, &mut subpix) {
Some(v) => v,
None => return, // nothing to do, all good
};
if paint.anti_alias {
scan::path_aa::fill_path(path, fill_rule, &clip_rect, &mut blitter);
} else {
scan::path::fill_path(path, fill_rule, &clip_rect, &mut blitter);
}
}
} else {
let path = match path.clone().transform(transform) {
Some(v) => v,
None => {
log::warn!("path transformation failed");
return;
}
};
let mut paint = paint.clone();
paint.shader.transform(transform);
self.fill_path(&path, &paint, fill_rule, Transform::identity(), mask)
}
}
/// Strokes a path.
///
/// Stroking is implemented using two separate algorithms:
///
/// 1. If a stroke width is wider than 1px (after applying the transformation),
/// a path will be converted into a stroked path and then filled using `fill_path`.
/// Which means that we have to allocate a separate `Path`, that can be 2-3x larger
/// then the original path.
/// 2. If a stroke width is thinner than 1px (after applying the transformation),
/// we will use hairline stroking, which doesn't involve a separate path allocation.
///
/// Also, if a `stroke` has a dash array, then path will be converted into
/// a dashed path first and then stroked. Which means a yet another allocation.
pub fn stroke_path(
&mut self,
path: &Path,
paint: &Paint,
stroke: &Stroke,
transform: Transform,
mask: Option<&Mask>,
) {
if stroke.width < 0.0 {
log::warn!("negative stroke width isn't allowed");
return;
}
let res_scale = PathStroker::compute_resolution_scale(&transform);
let dash_path;
let path = if let Some(ref dash) = stroke.dash {
dash_path = match path.dash(dash, res_scale) {
Some(v) => v,
None => {
log::warn!("path dashing failed");
return;
}
};
&dash_path
} else {
path
};
if let Some(coverage) = treat_as_hairline(paint, stroke, transform) {
let mut paint = paint.clone();
if coverage == 1.0 {
// No changes to the `paint`.
} else if paint.blend_mode.should_pre_scale_coverage() {
// This is the old technique, which we preserve for now so
// we don't change previous results (testing)
// the new way seems fine, its just (a tiny bit) different.
let scale = (coverage * 256.0) as i32;
let new_alpha = (255 * scale) >> 8;
paint.shader.apply_opacity(new_alpha as f32 / 255.0);
}
if let Some(tiler) = DrawTiler::new(self.width(), self.height()) {
let mut path = path.clone(); // TODO: avoid cloning
let mut paint = paint.clone();
if !transform.is_identity() {
paint.shader.transform(transform);
path = match path.transform(transform) {
Some(v) => v,
None => {
log::warn!("path transformation failed");
return;
}
};
}
for tile in tiler {
let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32));
path = match path.transform(ts) {
Some(v) => v,
None => {
log::warn!("path transformation failed");
return;
}
};
paint.shader.transform(ts);
let mut subpix = match self.subpixmap(tile.to_int_rect()) {
Some(v) => v,
None => continue, // technically unreachable
};
let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect()));
// We're ignoring "errors" here, because `stroke_hairline` will return `None`
// when rendering a tile that doesn't have a path on it.
// Which is not an error in this case.
Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, &mut subpix);
let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32);
path = match path.transform(ts) {
Some(v) => v,
None => return,
};
paint.shader.transform(ts);
}
} else {
let subpix = &mut self.as_subpixmap();
let submask = mask.map(|mask| mask.as_submask());
if !transform.is_identity() {
paint.shader.transform(transform);
// TODO: avoid clone
let path = match path.clone().transform(transform) {
Some(v) => v,
None => {
log::warn!("path transformation failed");
return;
}
};
Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, subpix);
} else {
Self::stroke_hairline(path, &paint, stroke.line_cap, submask, subpix);
}
}
} else {
let path = match path.stroke(stroke, res_scale) {
Some(v) => v,
None => {
log::warn!("path stroking failed");
return;
}
};
self.fill_path(&path, paint, FillRule::Winding, transform, mask);
}
}
/// A stroking for paths with subpixel/hairline width.
fn stroke_hairline(
path: &Path,
paint: &Paint,
line_cap: LineCap,
mask: Option<SubMaskRef>,
pixmap: &mut SubPixmapMut,
) {
let clip = pixmap.size.to_screen_int_rect(0, 0);
let mut blitter = match RasterPipelineBlitter::new(paint, mask, pixmap) {
Some(v) => v,
None => return, // nothing to do, all good
};
if paint.anti_alias {
scan::hairline_aa::stroke_path(path, line_cap, &clip, &mut blitter);
} else {
scan::hairline::stroke_path(path, line_cap, &clip, &mut blitter);
}
}
/// Draws a `Pixmap` on top of the current `Pixmap`.
///
/// The same as filling a rectangle with a `pixmap` pattern.
pub fn draw_pixmap(
&mut self,
x: i32,
y: i32,
pixmap: PixmapRef,
paint: &PixmapPaint,
transform: Transform,
mask: Option<&Mask>,
) {
let rect = pixmap.size().to_int_rect(x, y).to_rect();
// TODO: SkSpriteBlitter
// TODO: partially clipped
// TODO: clipped out
// Translate pattern as well as bounds.
let patt_transform = Transform::from_translate(x as f32, y as f32);
let paint = Paint {
shader: Pattern::new(
pixmap,
SpreadMode::Pad, // Pad, otherwise we will get weird borders overlap.
paint.quality,
paint.opacity,
patt_transform,
),
blend_mode: paint.blend_mode,
anti_alias: false, // Skia doesn't use it too.
force_hq_pipeline: false, // Pattern will use hq anyway.
};
self.fill_rect(rect, &paint, transform, mask);
}
/// Applies a masks.
///
/// When a `Mask` is passed to drawing methods, it will be used to mask-out
/// content we're about to draw.
/// This method masks-out an already drawn content.
/// It's not as fast, but can be useful when a mask is not available during drawing.
///
/// This method is similar to filling the whole pixmap with an another,
/// mask-like pixmap using the `DestinationOut` blend mode.
///
/// `Mask` must have the same size as `Pixmap`. No transform or offset are allowed.
pub fn apply_mask(&mut self, mask: &Mask) {
if self.size() != mask.size() {
log::warn!("Pixmap and Mask are expected to have the same size");
return;
}
// Just a dummy.
let pixmap_src = PixmapRef::from_bytes(&[0, 0, 0, 0], 1, 1).unwrap();
let mut p = RasterPipelineBuilder::new();
p.push(pipeline::Stage::LoadMaskU8);
p.push(pipeline::Stage::LoadDestination);
p.push(pipeline::Stage::DestinationIn);
p.push(pipeline::Stage::Store);
let mut p = p.compile();
let rect = self.size().to_screen_int_rect(0, 0);
p.run(
&rect,
pipeline::AAMaskCtx::default(),
mask.as_submask().mask_ctx(),
pixmap_src,
&mut self.as_subpixmap(),
);
}
}
fn treat_as_hairline(paint: &Paint, stroke: &Stroke, mut ts: Transform) -> Option<f32> {
fn fast_len(p: Point) -> f32 {
let mut x = p.x.abs();
let mut y = p.y.abs();
if x < y {
core::mem::swap(&mut x, &mut y);
}
x + y.half()
}
debug_assert!(stroke.width >= 0.0);
if stroke.width == 0.0 {
return Some(1.0);
}
if !paint.anti_alias {
return None;
}
// We don't care about translate.
ts.tx = 0.0;
ts.ty = 0.0;
// We need to try to fake a thick-stroke with a modulated hairline.
let mut points = [
Point::from_xy(stroke.width, 0.0),
Point::from_xy(0.0, stroke.width),
];
ts.map_points(&mut points);
let len0 = fast_len(points[0]);
let len1 = fast_len(points[1]);
if len0 <= 1.0 && len1 <= 1.0 {
return Some(len0.ave(len1));
}
None
}
/// Sometimes in the drawing pipeline, we have to perform math on path coordinates, even after
/// the path is in device-coordinates. Tessellation and clipping are two examples. Usually this
/// is pretty modest, but it can involve subtracting/adding coordinates, or multiplying by
/// small constants (e.g. 2,3,4). To try to preflight issues where these optionations could turn
/// finite path values into infinities (or NaNs), we allow the upper drawing code to reject
/// the path if its bounds (in device coordinates) is too close to max float.
pub(crate) fn is_too_big_for_math(path: &Path) -> bool {
// This value is just a guess. smaller is safer, but we don't want to reject largish paths
// that we don't have to.
const SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES: f32 = 0.25;
const MAX: f32 = SCALAR_MAX * SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES;
let b = path.bounds();
// use ! expression so we return true if bounds contains NaN
!(b.left() >= -MAX && b.top() >= -MAX && b.right() <= MAX && b.bottom() <= MAX)
}
/// Splits the target pixmap into a list of tiles.
///
/// Skia/tiny-skia uses a lot of fixed-point math during path rendering.
/// Probably more for precision than performance.
/// And our fixed-point types are limited by 8192 and 32768.
/// Which means that we cannot render a path larger than 8192 onto a pixmap.
/// When pixmap is smaller than 8192, the path will be automatically clipped anyway,
/// but for large pixmaps we have to render in tiles.
pub(crate) struct DrawTiler {
image_width: u32,
image_height: u32,
x_offset: u32,
y_offset: u32,
finished: bool,
}
impl DrawTiler {
// 8K is 1 too big, since 8K << supersample == 32768 which is too big for Fixed.
const MAX_DIMENSIONS: u32 = 8192 - 1;
fn required(image_width: u32, image_height: u32) -> bool {
image_width > Self::MAX_DIMENSIONS || image_height > Self::MAX_DIMENSIONS
}
pub(crate) fn new(image_width: u32, image_height: u32) -> Option<Self> {
if Self::required(image_width, image_height) {
Some(DrawTiler {
image_width,
image_height,
x_offset: 0,
y_offset: 0,
finished: false,
})
} else {
None
}
}
}
impl Iterator for DrawTiler {
type Item = ScreenIntRect;
fn next(&mut self) -> Option<Self::Item> {
if self.finished {
return None;
}
// TODO: iterate only over tiles that actually affected by the shape
if self.x_offset < self.image_width && self.y_offset < self.image_height {
let h = if self.y_offset < self.image_height {
(self.image_height - self.y_offset).min(Self::MAX_DIMENSIONS)
} else {
self.image_height
};
let r = ScreenIntRect::from_xywh(
self.x_offset,
self.y_offset,
(self.image_width - self.x_offset).min(Self::MAX_DIMENSIONS),
h,
);
self.x_offset += Self::MAX_DIMENSIONS;
if self.x_offset >= self.image_width {
self.x_offset = 0;
self.y_offset += Self::MAX_DIMENSIONS;
}
return r;
}
None
}
}
#[cfg(test)]
mod tests {
use super::*;
const MAX_DIM: u32 = DrawTiler::MAX_DIMENSIONS;
#[test]
fn skip() {
assert!(DrawTiler::new(100, 500).is_none());
}
#[test]
fn horizontal() {
let mut iter = DrawTiler::new(10000, 500).unwrap();
assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, MAX_DIM, 500));
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, 500)
);
assert_eq!(iter.next(), None);
}
#[test]
fn vertical() {
let mut iter = DrawTiler::new(500, 10000).unwrap();
assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, 500, MAX_DIM));
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(0, MAX_DIM, 500, 10000 - MAX_DIM)
);
assert_eq!(iter.next(), None);
}
#[test]
fn rect() {
let mut iter = DrawTiler::new(10000, 10000).unwrap();
// Row 1
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(0, 0, MAX_DIM, MAX_DIM)
);
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, MAX_DIM)
);
// Row 2
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(0, MAX_DIM, MAX_DIM, 10000 - MAX_DIM)
);
assert_eq!(
iter.next(),
ScreenIntRect::from_xywh(MAX_DIM, MAX_DIM, 10000 - MAX_DIM, 10000 - MAX_DIM)
);
assert_eq!(iter.next(), None);
}
}