1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::*;

use tiny_skia_path::{PathStroker, Scalar, SCALAR_MAX};

use crate::geom::ScreenIntRect;
use crate::mask::SubMaskRef;
use crate::pipeline::{RasterPipelineBlitter, RasterPipelineBuilder};
use crate::pixmap::SubPixmapMut;
use crate::scan;

use crate::geom::IntSizeExt;
#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;

/// A path filling rule.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum FillRule {
    /// Specifies that "inside" is computed by a non-zero sum of signed edge crossings.
    Winding,
    /// Specifies that "inside" is computed by an odd number of edge crossings.
    EvenOdd,
}

impl Default for FillRule {
    fn default() -> Self {
        FillRule::Winding
    }
}

/// Controls how a shape should be painted.
#[derive(Clone, PartialEq, Debug)]
pub struct Paint<'a> {
    /// A paint shader.
    ///
    /// Default: black color
    pub shader: Shader<'a>,

    /// Paint blending mode.
    ///
    /// Default: SourceOver
    pub blend_mode: BlendMode,

    /// Enables anti-aliased painting.
    ///
    /// Default: true
    pub anti_alias: bool,

    /// Forces the high quality/precision rendering pipeline.
    ///
    /// `tiny-skia`, just like Skia, has two rendering pipelines:
    /// one uses `f32` and another one uses `u16`. `u16` one is usually way faster,
    /// but less precise. Which can lead to slight differences.
    ///
    /// By default, `tiny-skia` will choose the pipeline automatically,
    /// depending on a blending mode and other parameters.
    /// But you can force the high quality one using this flag.
    ///
    /// This feature is especially useful during testing.
    ///
    /// Unlike high quality pipeline, the low quality one doesn't support all
    /// rendering stages, therefore we cannot force it like hq one.
    ///
    /// Default: false
    pub force_hq_pipeline: bool,
}

impl Default for Paint<'_> {
    fn default() -> Self {
        Paint {
            shader: Shader::SolidColor(Color::BLACK),
            blend_mode: BlendMode::default(),
            anti_alias: true,
            force_hq_pipeline: false,
        }
    }
}

impl<'a> Paint<'a> {
    /// Sets a paint source to a solid color.
    pub fn set_color(&mut self, color: Color) {
        self.shader = Shader::SolidColor(color);
    }

    /// Sets a paint source to a solid color.
    ///
    /// `self.shader = Shader::SolidColor(Color::from_rgba8(50, 127, 150, 200));` shorthand.
    pub fn set_color_rgba8(&mut self, r: u8, g: u8, b: u8, a: u8) {
        self.set_color(Color::from_rgba8(r, g, b, a))
    }

    /// Checks that the paint source is a solid color.
    pub fn is_solid_color(&self) -> bool {
        matches!(self.shader, Shader::SolidColor(_))
    }
}

impl Pixmap {
    /// Draws a filled rectangle onto the pixmap.
    ///
    /// See [`PixmapMut::fill_rect`](struct.PixmapMut.html#method.fill_rect) for details.
    pub fn fill_rect(
        &mut self,
        rect: Rect,
        paint: &Paint,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        self.as_mut().fill_rect(rect, paint, transform, mask);
    }

    /// Draws a filled path onto the pixmap.
    ///
    /// See [`PixmapMut::fill_path`](struct.PixmapMut.html#method.fill_path) for details.
    pub fn fill_path(
        &mut self,
        path: &Path,
        paint: &Paint,
        fill_rule: FillRule,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        self.as_mut()
            .fill_path(path, paint, fill_rule, transform, mask);
    }

    /// Strokes a path.
    ///
    /// See [`PixmapMut::stroke_path`](struct.PixmapMut.html#method.stroke_path) for details.
    pub fn stroke_path(
        &mut self,
        path: &Path,
        paint: &Paint,
        stroke: &Stroke,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        self.as_mut()
            .stroke_path(path, paint, stroke, transform, mask);
    }

    /// Draws a `Pixmap` on top of the current `Pixmap`.
    ///
    /// See [`PixmapMut::draw_pixmap`](struct.PixmapMut.html#method.draw_pixmap) for details.
    pub fn draw_pixmap(
        &mut self,
        x: i32,
        y: i32,
        pixmap: PixmapRef,
        paint: &PixmapPaint,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        self.as_mut()
            .draw_pixmap(x, y, pixmap, paint, transform, mask);
    }

    /// Applies a masks.
    ///
    /// See [`PixmapMut::apply_mask`](struct.PixmapMut.html#method.apply_mask) for details.
    pub fn apply_mask(&mut self, mask: &Mask) {
        self.as_mut().apply_mask(mask);
    }
}

impl PixmapMut<'_> {
    // TODO: accept NonZeroRect?
    /// Draws a filled rectangle onto the pixmap.
    ///
    /// This function is usually slower than filling a rectangular path,
    /// but it produces better results. Mainly it doesn't suffer from weird
    /// clipping of horizontal/vertical edges.
    ///
    /// Used mainly to render a pixmap onto a pixmap.
    ///
    /// Returns `None` when there is nothing to fill or in case of a numeric overflow.
    pub fn fill_rect(
        &mut self,
        rect: Rect,
        paint: &Paint,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        // TODO: we probably can use tiler for rect too
        if transform.is_identity() && !DrawTiler::required(self.width(), self.height()) {
            // TODO: ignore rects outside the pixmap

            let clip = self.size().to_screen_int_rect(0, 0);

            let mask = mask.map(|mask| mask.as_submask());
            let mut subpix = self.as_subpixmap();
            let mut blitter = match RasterPipelineBlitter::new(paint, mask, &mut subpix) {
                Some(v) => v,
                None => return, // nothing to do, all good
            };

            if paint.anti_alias {
                scan::fill_rect_aa(&rect, &clip, &mut blitter);
            } else {
                scan::fill_rect(&rect, &clip, &mut blitter);
            }
        } else {
            let path = PathBuilder::from_rect(rect);
            self.fill_path(&path, paint, FillRule::Winding, transform, mask);
        }
    }

    /// Draws a filled path onto the pixmap.
    pub fn fill_path(
        &mut self,
        path: &Path,
        paint: &Paint,
        fill_rule: FillRule,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        if transform.is_identity() {
            // This is sort of similar to SkDraw::drawPath

            // Skip empty paths and horizontal/vertical lines.
            let path_bounds = path.bounds();
            if path_bounds.width().is_nearly_zero() || path_bounds.height().is_nearly_zero() {
                log::warn!("empty paths and horizontal/vertical lines cannot be filled");
                return;
            }

            if is_too_big_for_math(path) {
                log::warn!("path coordinates are too big");
                return;
            }

            // TODO: ignore paths outside the pixmap

            if let Some(tiler) = DrawTiler::new(self.width(), self.height()) {
                let mut path = path.clone(); // TODO: avoid cloning
                let mut paint = paint.clone();

                for tile in tiler {
                    let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32));
                    path = match path.transform(ts) {
                        Some(v) => v,
                        None => {
                            log::warn!("path transformation failed");
                            return;
                        }
                    };
                    paint.shader.transform(ts);

                    let clip_rect = tile.size().to_screen_int_rect(0, 0);
                    let mut subpix = match self.subpixmap(tile.to_int_rect()) {
                        Some(v) => v,
                        None => continue, // technically unreachable
                    };

                    let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect()));
                    let mut blitter = match RasterPipelineBlitter::new(&paint, submask, &mut subpix)
                    {
                        Some(v) => v,
                        None => continue, // nothing to do, all good
                    };

                    // We're ignoring "errors" here, because `fill_path` will return `None`
                    // when rendering a tile that doesn't have a path on it.
                    // Which is not an error in this case.
                    if paint.anti_alias {
                        scan::path_aa::fill_path(&path, fill_rule, &clip_rect, &mut blitter);
                    } else {
                        scan::path::fill_path(&path, fill_rule, &clip_rect, &mut blitter);
                    }

                    let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32);
                    path = match path.transform(ts) {
                        Some(v) => v,
                        None => return, // technically unreachable
                    };
                    paint.shader.transform(ts);
                }
            } else {
                let clip_rect = self.size().to_screen_int_rect(0, 0);
                let submask = mask.map(|mask| mask.as_submask());
                let mut subpix = self.as_subpixmap();
                let mut blitter = match RasterPipelineBlitter::new(paint, submask, &mut subpix) {
                    Some(v) => v,
                    None => return, // nothing to do, all good
                };

                if paint.anti_alias {
                    scan::path_aa::fill_path(path, fill_rule, &clip_rect, &mut blitter);
                } else {
                    scan::path::fill_path(path, fill_rule, &clip_rect, &mut blitter);
                }
            }
        } else {
            let path = match path.clone().transform(transform) {
                Some(v) => v,
                None => {
                    log::warn!("path transformation failed");
                    return;
                }
            };

            let mut paint = paint.clone();
            paint.shader.transform(transform);

            self.fill_path(&path, &paint, fill_rule, Transform::identity(), mask)
        }
    }

    /// Strokes a path.
    ///
    /// Stroking is implemented using two separate algorithms:
    ///
    /// 1. If a stroke width is wider than 1px (after applying the transformation),
    ///    a path will be converted into a stroked path and then filled using `fill_path`.
    ///    Which means that we have to allocate a separate `Path`, that can be 2-3x larger
    ///    then the original path.
    /// 2. If a stroke width is thinner than 1px (after applying the transformation),
    ///    we will use hairline stroking, which doesn't involve a separate path allocation.
    ///
    /// Also, if a `stroke` has a dash array, then path will be converted into
    /// a dashed path first and then stroked. Which means a yet another allocation.
    pub fn stroke_path(
        &mut self,
        path: &Path,
        paint: &Paint,
        stroke: &Stroke,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        if stroke.width < 0.0 {
            log::warn!("negative stroke width isn't allowed");
            return;
        }

        let res_scale = PathStroker::compute_resolution_scale(&transform);

        let dash_path;
        let path = if let Some(ref dash) = stroke.dash {
            dash_path = match path.dash(dash, res_scale) {
                Some(v) => v,
                None => {
                    log::warn!("path dashing failed");
                    return;
                }
            };
            &dash_path
        } else {
            path
        };

        if let Some(coverage) = treat_as_hairline(paint, stroke, transform) {
            let mut paint = paint.clone();
            if coverage == 1.0 {
                // No changes to the `paint`.
            } else if paint.blend_mode.should_pre_scale_coverage() {
                // This is the old technique, which we preserve for now so
                // we don't change previous results (testing)
                // the new way seems fine, its just (a tiny bit) different.
                let scale = (coverage * 256.0) as i32;
                let new_alpha = (255 * scale) >> 8;
                paint.shader.apply_opacity(new_alpha as f32 / 255.0);
            }

            if let Some(tiler) = DrawTiler::new(self.width(), self.height()) {
                let mut path = path.clone(); // TODO: avoid cloning
                let mut paint = paint.clone();

                if !transform.is_identity() {
                    paint.shader.transform(transform);
                    path = match path.transform(transform) {
                        Some(v) => v,
                        None => {
                            log::warn!("path transformation failed");
                            return;
                        }
                    };
                }

                for tile in tiler {
                    let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32));
                    path = match path.transform(ts) {
                        Some(v) => v,
                        None => {
                            log::warn!("path transformation failed");
                            return;
                        }
                    };
                    paint.shader.transform(ts);

                    let mut subpix = match self.subpixmap(tile.to_int_rect()) {
                        Some(v) => v,
                        None => continue, // technically unreachable
                    };
                    let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect()));

                    // We're ignoring "errors" here, because `stroke_hairline` will return `None`
                    // when rendering a tile that doesn't have a path on it.
                    // Which is not an error in this case.
                    Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, &mut subpix);

                    let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32);
                    path = match path.transform(ts) {
                        Some(v) => v,
                        None => return,
                    };
                    paint.shader.transform(ts);
                }
            } else {
                let subpix = &mut self.as_subpixmap();
                let submask = mask.map(|mask| mask.as_submask());
                if !transform.is_identity() {
                    paint.shader.transform(transform);

                    // TODO: avoid clone
                    let path = match path.clone().transform(transform) {
                        Some(v) => v,
                        None => {
                            log::warn!("path transformation failed");
                            return;
                        }
                    };

                    Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, subpix);
                } else {
                    Self::stroke_hairline(path, &paint, stroke.line_cap, submask, subpix);
                }
            }
        } else {
            let path = match path.stroke(stroke, res_scale) {
                Some(v) => v,
                None => {
                    log::warn!("path stroking failed");
                    return;
                }
            };

            self.fill_path(&path, paint, FillRule::Winding, transform, mask);
        }
    }

    /// A stroking for paths with subpixel/hairline width.
    fn stroke_hairline(
        path: &Path,
        paint: &Paint,
        line_cap: LineCap,
        mask: Option<SubMaskRef>,
        pixmap: &mut SubPixmapMut,
    ) {
        let clip = pixmap.size.to_screen_int_rect(0, 0);
        let mut blitter = match RasterPipelineBlitter::new(paint, mask, pixmap) {
            Some(v) => v,
            None => return, // nothing to do, all good
        };
        if paint.anti_alias {
            scan::hairline_aa::stroke_path(path, line_cap, &clip, &mut blitter);
        } else {
            scan::hairline::stroke_path(path, line_cap, &clip, &mut blitter);
        }
    }

    /// Draws a `Pixmap` on top of the current `Pixmap`.
    ///
    /// The same as filling a rectangle with a `pixmap` pattern.
    pub fn draw_pixmap(
        &mut self,
        x: i32,
        y: i32,
        pixmap: PixmapRef,
        paint: &PixmapPaint,
        transform: Transform,
        mask: Option<&Mask>,
    ) {
        let rect = pixmap.size().to_int_rect(x, y).to_rect();

        // TODO: SkSpriteBlitter
        // TODO: partially clipped
        // TODO: clipped out

        // Translate pattern as well as bounds.
        let patt_transform = Transform::from_translate(x as f32, y as f32);

        let paint = Paint {
            shader: Pattern::new(
                pixmap,
                SpreadMode::Pad, // Pad, otherwise we will get weird borders overlap.
                paint.quality,
                paint.opacity,
                patt_transform,
            ),
            blend_mode: paint.blend_mode,
            anti_alias: false,        // Skia doesn't use it too.
            force_hq_pipeline: false, // Pattern will use hq anyway.
        };

        self.fill_rect(rect, &paint, transform, mask);
    }

    /// Applies a masks.
    ///
    /// When a `Mask` is passed to drawing methods, it will be used to mask-out
    /// content we're about to draw.
    /// This method masks-out an already drawn content.
    /// It's not as fast, but can be useful when a mask is not available during drawing.
    ///
    /// This method is similar to filling the whole pixmap with an another,
    /// mask-like pixmap using the `DestinationOut` blend mode.
    ///
    /// `Mask` must have the same size as `Pixmap`. No transform or offset are allowed.
    pub fn apply_mask(&mut self, mask: &Mask) {
        if self.size() != mask.size() {
            log::warn!("Pixmap and Mask are expected to have the same size");
            return;
        }

        // Just a dummy.
        let pixmap_src = PixmapRef::from_bytes(&[0, 0, 0, 0], 1, 1).unwrap();

        let mut p = RasterPipelineBuilder::new();
        p.push(pipeline::Stage::LoadMaskU8);
        p.push(pipeline::Stage::LoadDestination);
        p.push(pipeline::Stage::DestinationIn);
        p.push(pipeline::Stage::Store);
        let mut p = p.compile();
        let rect = self.size().to_screen_int_rect(0, 0);
        p.run(
            &rect,
            pipeline::AAMaskCtx::default(),
            mask.as_submask().mask_ctx(),
            pixmap_src,
            &mut self.as_subpixmap(),
        );
    }
}

fn treat_as_hairline(paint: &Paint, stroke: &Stroke, mut ts: Transform) -> Option<f32> {
    fn fast_len(p: Point) -> f32 {
        let mut x = p.x.abs();
        let mut y = p.y.abs();
        if x < y {
            core::mem::swap(&mut x, &mut y);
        }

        x + y.half()
    }

    debug_assert!(stroke.width >= 0.0);

    if stroke.width == 0.0 {
        return Some(1.0);
    }

    if !paint.anti_alias {
        return None;
    }

    // We don't care about translate.
    ts.tx = 0.0;
    ts.ty = 0.0;

    // We need to try to fake a thick-stroke with a modulated hairline.
    let mut points = [
        Point::from_xy(stroke.width, 0.0),
        Point::from_xy(0.0, stroke.width),
    ];
    ts.map_points(&mut points);

    let len0 = fast_len(points[0]);
    let len1 = fast_len(points[1]);

    if len0 <= 1.0 && len1 <= 1.0 {
        return Some(len0.ave(len1));
    }

    None
}

/// Sometimes in the drawing pipeline, we have to perform math on path coordinates, even after
/// the path is in device-coordinates. Tessellation and clipping are two examples. Usually this
/// is pretty modest, but it can involve subtracting/adding coordinates, or multiplying by
/// small constants (e.g. 2,3,4). To try to preflight issues where these optionations could turn
/// finite path values into infinities (or NaNs), we allow the upper drawing code to reject
/// the path if its bounds (in device coordinates) is too close to max float.
pub(crate) fn is_too_big_for_math(path: &Path) -> bool {
    // This value is just a guess. smaller is safer, but we don't want to reject largish paths
    // that we don't have to.
    const SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES: f32 = 0.25;
    const MAX: f32 = SCALAR_MAX * SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES;

    let b = path.bounds();

    // use ! expression so we return true if bounds contains NaN
    !(b.left() >= -MAX && b.top() >= -MAX && b.right() <= MAX && b.bottom() <= MAX)
}

/// Splits the target pixmap into a list of tiles.
///
/// Skia/tiny-skia uses a lot of fixed-point math during path rendering.
/// Probably more for precision than performance.
/// And our fixed-point types are limited by 8192 and 32768.
/// Which means that we cannot render a path larger than 8192 onto a pixmap.
/// When pixmap is smaller than 8192, the path will be automatically clipped anyway,
/// but for large pixmaps we have to render in tiles.
pub(crate) struct DrawTiler {
    image_width: u32,
    image_height: u32,
    x_offset: u32,
    y_offset: u32,
    finished: bool,
}

impl DrawTiler {
    // 8K is 1 too big, since 8K << supersample == 32768 which is too big for Fixed.
    const MAX_DIMENSIONS: u32 = 8192 - 1;

    fn required(image_width: u32, image_height: u32) -> bool {
        image_width > Self::MAX_DIMENSIONS || image_height > Self::MAX_DIMENSIONS
    }

    pub(crate) fn new(image_width: u32, image_height: u32) -> Option<Self> {
        if Self::required(image_width, image_height) {
            Some(DrawTiler {
                image_width,
                image_height,
                x_offset: 0,
                y_offset: 0,
                finished: false,
            })
        } else {
            None
        }
    }
}

impl Iterator for DrawTiler {
    type Item = ScreenIntRect;

    fn next(&mut self) -> Option<Self::Item> {
        if self.finished {
            return None;
        }

        // TODO: iterate only over tiles that actually affected by the shape

        if self.x_offset < self.image_width && self.y_offset < self.image_height {
            let h = if self.y_offset < self.image_height {
                (self.image_height - self.y_offset).min(Self::MAX_DIMENSIONS)
            } else {
                self.image_height
            };

            let r = ScreenIntRect::from_xywh(
                self.x_offset,
                self.y_offset,
                (self.image_width - self.x_offset).min(Self::MAX_DIMENSIONS),
                h,
            );

            self.x_offset += Self::MAX_DIMENSIONS;
            if self.x_offset >= self.image_width {
                self.x_offset = 0;
                self.y_offset += Self::MAX_DIMENSIONS;
            }

            return r;
        }

        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    const MAX_DIM: u32 = DrawTiler::MAX_DIMENSIONS;

    #[test]
    fn skip() {
        assert!(DrawTiler::new(100, 500).is_none());
    }

    #[test]
    fn horizontal() {
        let mut iter = DrawTiler::new(10000, 500).unwrap();
        assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, MAX_DIM, 500));
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, 500)
        );
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn vertical() {
        let mut iter = DrawTiler::new(500, 10000).unwrap();
        assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, 500, MAX_DIM));
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(0, MAX_DIM, 500, 10000 - MAX_DIM)
        );
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn rect() {
        let mut iter = DrawTiler::new(10000, 10000).unwrap();
        // Row 1
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(0, 0, MAX_DIM, MAX_DIM)
        );
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, MAX_DIM)
        );
        // Row 2
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(0, MAX_DIM, MAX_DIM, 10000 - MAX_DIM)
        );
        assert_eq!(
            iter.next(),
            ScreenIntRect::from_xywh(MAX_DIM, MAX_DIM, 10000 - MAX_DIM, 10000 - MAX_DIM)
        );
        assert_eq!(iter.next(), None);
    }
}