1use core::marker::PhantomData;
5
6use crate::{
7 convert::IntoColorUnclamped,
8 encoding::Linear,
9 num::{Arithmetics, FromScalar, IsValidDivisor, Recip},
10 rgb::{Primaries, Rgb, RgbSpace},
11 white_point::{Any, WhitePoint},
12 Xyz, Yxy,
13};
14
15pub type Mat3<T> = [T; 9];
17
18#[inline]
20pub fn multiply_xyz<T>(c: Mat3<T>, f: Xyz<Any, T>) -> Xyz<Any, T>
21where
22 T: Arithmetics,
23{
24 let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;
26
27 let x1 = c0 * &f.x;
28 let y1 = c3 * &f.x;
29 let z1 = c6 * f.x;
30 let x2 = c1 * &f.y;
31 let y2 = c4 * &f.y;
32 let z2 = c7 * f.y;
33 let x3 = c2 * &f.z;
34 let y3 = c5 * &f.z;
35 let z3 = c8 * f.z;
36
37 Xyz {
38 x: x1 + x2 + x3,
39 y: y1 + y2 + y3,
40 z: z1 + z2 + z3,
41 white_point: PhantomData,
42 }
43}
44#[inline]
46pub fn multiply_xyz_to_rgb<S, V, T>(c: Mat3<T>, f: Xyz<S::WhitePoint, V>) -> Rgb<Linear<S>, V>
47where
48 S: RgbSpace,
49 V: Arithmetics + FromScalar<Scalar = T>,
50{
51 let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;
54
55 Rgb {
56 red: (V::from_scalar(c0) * &f.x)
57 + (V::from_scalar(c1) * &f.y)
58 + (V::from_scalar(c2) * &f.z),
59 green: (V::from_scalar(c3) * &f.x)
60 + (V::from_scalar(c4) * &f.y)
61 + (V::from_scalar(c5) * &f.z),
62 blue: (V::from_scalar(c6) * f.x) + (V::from_scalar(c7) * f.y) + (V::from_scalar(c8) * f.z),
63 standard: PhantomData,
64 }
65}
66#[inline]
68pub fn multiply_rgb_to_xyz<S, V, T>(c: Mat3<T>, f: Rgb<Linear<S>, V>) -> Xyz<S::WhitePoint, V>
69where
70 S: RgbSpace,
71 V: Arithmetics + FromScalar<Scalar = T>,
72{
73 let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;
76
77 Xyz {
78 x: (V::from_scalar(c0) * &f.red)
79 + (V::from_scalar(c1) * &f.green)
80 + (V::from_scalar(c2) * &f.blue),
81 y: (V::from_scalar(c3) * &f.red)
82 + (V::from_scalar(c4) * &f.green)
83 + (V::from_scalar(c5) * &f.blue),
84 z: (V::from_scalar(c6) * f.red)
85 + (V::from_scalar(c7) * f.green)
86 + (V::from_scalar(c8) * f.blue),
87 white_point: PhantomData,
88 }
89}
90
91#[inline]
93pub fn multiply_3x3<T>(c: Mat3<T>, f: Mat3<T>) -> Mat3<T>
94where
95 T: Arithmetics + Clone,
96{
97 let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;
99 let [f0, f1, f2, f3, f4, f5, f6, f7, f8] = f;
100
101 let o0 = c0.clone() * &f0 + c1.clone() * &f3 + c2.clone() * &f6;
102 let o1 = c0.clone() * &f1 + c1.clone() * &f4 + c2.clone() * &f7;
103 let o2 = c0 * &f2 + c1 * &f5 + c2 * &f8;
104
105 let o3 = c3.clone() * &f0 + c4.clone() * &f3 + c5.clone() * &f6;
106 let o4 = c3.clone() * &f1 + c4.clone() * &f4 + c5.clone() * &f7;
107 let o5 = c3 * &f2 + c4 * &f5 + c5 * &f8;
108
109 let o6 = c6.clone() * f0 + c7.clone() * f3 + c8.clone() * f6;
110 let o7 = c6.clone() * f1 + c7.clone() * f4 + c8.clone() * f7;
111 let o8 = c6 * f2 + c7 * f5 + c8 * f8;
112
113 [o0, o1, o2, o3, o4, o5, o6, o7, o8]
114}
115
116#[inline]
118pub fn matrix_inverse<T>(a: Mat3<T>) -> Mat3<T>
119where
120 T: Recip + IsValidDivisor<Mask = bool> + Arithmetics + Clone,
121{
122 assert!(a.len() > 8);
125
126 let d0 = a[4].clone() * &a[8] - a[5].clone() * &a[7];
127 let d1 = a[3].clone() * &a[8] - a[5].clone() * &a[6];
128 let d2 = a[3].clone() * &a[7] - a[4].clone() * &a[6];
129 let mut det = a[0].clone() * &d0 - a[1].clone() * &d1 + a[2].clone() * &d2;
130 let d3 = a[1].clone() * &a[8] - a[2].clone() * &a[7];
131 let d4 = a[0].clone() * &a[8] - a[2].clone() * &a[6];
132 let d5 = a[0].clone() * &a[7] - a[1].clone() * &a[6];
133 let d6 = a[1].clone() * &a[5] - a[2].clone() * &a[4];
134 let d7 = a[0].clone() * &a[5] - a[2].clone() * &a[3];
135 let d8 = a[0].clone() * &a[4] - a[1].clone() * &a[3];
136
137 if !det.is_valid_divisor() {
138 panic!("The given matrix is not invertible")
139 }
140 det = det.recip();
141
142 [
143 d0 * &det,
144 -d3 * &det,
145 d6 * &det,
146 -d1 * &det,
147 d4 * &det,
148 -d7 * &det,
149 d2 * &det,
150 -d5 * &det,
151 d8 * det,
152 ]
153}
154
155#[inline(always)]
159pub fn matrix_map<T, U>(matrix: Mat3<T>, mut f: impl FnMut(T) -> U) -> Mat3<U> {
160 let [m1, m2, m3, m4, m5, m6, m7, m8, m9] = matrix;
161 [
162 f(m1),
163 f(m2),
164 f(m3),
165 f(m4),
166 f(m5),
167 f(m6),
168 f(m7),
169 f(m8),
170 f(m9),
171 ]
172}
173
174#[inline]
176pub fn rgb_to_xyz_matrix<S, T>() -> Mat3<T>
177where
178 S: RgbSpace,
179 S::Primaries: Primaries<T>,
180 S::WhitePoint: WhitePoint<T>,
181 T: Recip + IsValidDivisor<Mask = bool> + Arithmetics + Clone + FromScalar<Scalar = T>,
182 Yxy<Any, T>: IntoColorUnclamped<Xyz<Any, T>>,
183{
184 let r = S::Primaries::red().into_color_unclamped();
185 let g = S::Primaries::green().into_color_unclamped();
186 let b = S::Primaries::blue().into_color_unclamped();
187
188 let matrix = mat3_from_primaries(r, g, b);
189
190 let s_matrix: Rgb<Linear<S>, T> = multiply_xyz_to_rgb(
191 matrix_inverse(matrix.clone()),
192 S::WhitePoint::get_xyz().with_white_point(),
193 );
194
195 let [t0, t1, t2, t3, t4, t5, t6, t7, t8] = matrix;
197
198 [
199 t0 * &s_matrix.red,
200 t1 * &s_matrix.green,
201 t2 * &s_matrix.blue,
202 t3 * &s_matrix.red,
203 t4 * &s_matrix.green,
204 t5 * &s_matrix.blue,
205 t6 * s_matrix.red,
206 t7 * s_matrix.green,
207 t8 * s_matrix.blue,
208 ]
209}
210
211#[rustfmt::skip]
212#[inline]
213fn mat3_from_primaries<T>(r: Xyz<Any, T>, g: Xyz<Any, T>, b: Xyz<Any, T>) -> Mat3<T> {
214 [
215 r.x, g.x, b.x,
216 r.y, g.y, b.y,
217 r.z, g.z, b.z,
218 ]
219}
220
221#[cfg(feature = "approx")]
222#[cfg(test)]
223mod test {
224 use super::{matrix_inverse, multiply_3x3, multiply_xyz, rgb_to_xyz_matrix};
225 use crate::chromatic_adaptation::AdaptInto;
226 use crate::encoding::{Linear, Srgb};
227 use crate::rgb::Rgb;
228 use crate::white_point::D50;
229 use crate::Xyz;
230
231 #[test]
232 fn matrix_multiply_3x3() {
233 let inp1 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 2.0, 1.0, 3.0];
234 let inp2 = [4.0, 5.0, 6.0, 6.0, 5.0, 4.0, 4.0, 6.0, 5.0];
235 let expected = [28.0, 33.0, 29.0, 28.0, 31.0, 31.0, 26.0, 33.0, 31.0];
236
237 let computed = multiply_3x3(inp1, inp2);
238 for (t1, t2) in expected.iter().zip(computed.iter()) {
239 assert_relative_eq!(t1, t2);
240 }
241 }
242
243 #[test]
244 fn matrix_multiply_xyz() {
245 let inp1 = [0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0.2, 0.1, 0.3];
246 let inp2 = Xyz::new(0.4, 0.6, 0.8);
247
248 let expected = Xyz::new(0.4, 0.32, 0.38);
249
250 let computed = multiply_xyz(inp1, inp2);
251 assert_relative_eq!(expected, computed)
252 }
253
254 #[test]
255 fn matrix_inverse_check_1() {
256 let input: [f64; 9] = [3.0, 0.0, 2.0, 2.0, 0.0, -2.0, 0.0, 1.0, 1.0];
257
258 let expected: [f64; 9] = [0.2, 0.2, 0.0, -0.2, 0.3, 1.0, 0.2, -0.3, 0.0];
259 let computed = matrix_inverse(input);
260 for (t1, t2) in expected.iter().zip(computed.iter()) {
261 assert_relative_eq!(t1, t2);
262 }
263 }
264 #[test]
265 fn matrix_inverse_check_2() {
266 let input: [f64; 9] = [1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0];
267
268 let expected: [f64; 9] = [-1.0, -1.0, 2.0, -1.0, 0.0, 1.0, 2.0, 1.0, -2.0];
269 let computed = matrix_inverse(input);
270 for (t1, t2) in expected.iter().zip(computed.iter()) {
271 assert_relative_eq!(t1, t2);
272 }
273 }
274 #[test]
275 #[should_panic]
276 fn matrix_inverse_panic() {
277 let input: [f64; 9] = [1.0, 0.0, 0.0, 2.0, 0.0, 0.0, -4.0, 6.0, 1.0];
278 matrix_inverse(input);
279 }
280
281 #[rustfmt::skip]
282 #[test]
283 fn d65_rgb_conversion_matrix() {
284 let expected = [
285 0.4124564, 0.3575761, 0.1804375,
286 0.2126729, 0.7151522, 0.0721750,
287 0.0193339, 0.1191920, 0.9503041
288 ];
289 let computed = rgb_to_xyz_matrix::<Srgb, f64>();
290 for (e, c) in expected.iter().zip(computed.iter()) {
291 assert_relative_eq!(e, c, epsilon = 0.000001)
292 }
293 }
294
295 #[test]
296 fn d65_to_d50() {
297 let input: Rgb<Linear<Srgb>> = Rgb::new(1.0, 1.0, 1.0);
298 let expected: Rgb<Linear<(Srgb, D50)>> = Rgb::new(1.0, 1.0, 1.0);
299
300 let computed: Rgb<Linear<(Srgb, D50)>> = input.adapt_into();
301 assert_relative_eq!(expected, computed, epsilon = 0.000001);
302 }
303}