palette/
matrix.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
//! This module provides simple matrix operations on 3x3 matrices to aid in
//! chromatic adaptation and conversion calculations.

use core::marker::PhantomData;

use crate::{
    convert::IntoColorUnclamped,
    encoding::Linear,
    num::{Arithmetics, FromScalar, IsValidDivisor, Recip},
    rgb::{Primaries, Rgb, RgbSpace},
    white_point::{Any, WhitePoint},
    Xyz, Yxy,
};

/// A 9 element array representing a 3x3 matrix.
pub type Mat3<T> = [T; 9];

/// Multiply the 3x3 matrix with an XYZ color.
#[inline]
pub fn multiply_xyz<T>(c: Mat3<T>, f: Xyz<Any, T>) -> Xyz<Any, T>
where
    T: Arithmetics,
{
    // Input Mat3 is destructured to avoid panic paths
    let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;

    let x1 = c0 * &f.x;
    let y1 = c3 * &f.x;
    let z1 = c6 * f.x;
    let x2 = c1 * &f.y;
    let y2 = c4 * &f.y;
    let z2 = c7 * f.y;
    let x3 = c2 * &f.z;
    let y3 = c5 * &f.z;
    let z3 = c8 * f.z;

    Xyz {
        x: x1 + x2 + x3,
        y: y1 + y2 + y3,
        z: z1 + z2 + z3,
        white_point: PhantomData,
    }
}
/// Multiply the 3x3 matrix with an XYZ color to return an RGB color.
#[inline]
pub fn multiply_xyz_to_rgb<S, V, T>(c: Mat3<T>, f: Xyz<S::WhitePoint, V>) -> Rgb<Linear<S>, V>
where
    S: RgbSpace,
    V: Arithmetics + FromScalar<Scalar = T>,
{
    // Input Mat3 is destructured to avoid panic paths. red, green, and blue
    // can't be extracted like in `multiply_xyz` to get a performance increase
    let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;

    Rgb {
        red: (V::from_scalar(c0) * &f.x)
            + (V::from_scalar(c1) * &f.y)
            + (V::from_scalar(c2) * &f.z),
        green: (V::from_scalar(c3) * &f.x)
            + (V::from_scalar(c4) * &f.y)
            + (V::from_scalar(c5) * &f.z),
        blue: (V::from_scalar(c6) * f.x) + (V::from_scalar(c7) * f.y) + (V::from_scalar(c8) * f.z),
        standard: PhantomData,
    }
}
/// Multiply the 3x3 matrix with an RGB color to return an XYZ color.
#[inline]
pub fn multiply_rgb_to_xyz<S, V, T>(c: Mat3<T>, f: Rgb<Linear<S>, V>) -> Xyz<S::WhitePoint, V>
where
    S: RgbSpace,
    V: Arithmetics + FromScalar<Scalar = T>,
{
    // Input Mat3 is destructured to avoid panic paths. Same problem as
    // `multiply_xyz_to_rgb` for extracting x, y, z
    let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;

    Xyz {
        x: (V::from_scalar(c0) * &f.red)
            + (V::from_scalar(c1) * &f.green)
            + (V::from_scalar(c2) * &f.blue),
        y: (V::from_scalar(c3) * &f.red)
            + (V::from_scalar(c4) * &f.green)
            + (V::from_scalar(c5) * &f.blue),
        z: (V::from_scalar(c6) * f.red)
            + (V::from_scalar(c7) * f.green)
            + (V::from_scalar(c8) * f.blue),
        white_point: PhantomData,
    }
}

/// Multiply two 3x3 matrices.
#[inline]
pub fn multiply_3x3<T>(c: Mat3<T>, f: Mat3<T>) -> Mat3<T>
where
    T: Arithmetics + Clone,
{
    // Input Mat3 are destructured to avoid panic paths
    let [c0, c1, c2, c3, c4, c5, c6, c7, c8] = c;
    let [f0, f1, f2, f3, f4, f5, f6, f7, f8] = f;

    let o0 = c0.clone() * &f0 + c1.clone() * &f3 + c2.clone() * &f6;
    let o1 = c0.clone() * &f1 + c1.clone() * &f4 + c2.clone() * &f7;
    let o2 = c0 * &f2 + c1 * &f5 + c2 * &f8;

    let o3 = c3.clone() * &f0 + c4.clone() * &f3 + c5.clone() * &f6;
    let o4 = c3.clone() * &f1 + c4.clone() * &f4 + c5.clone() * &f7;
    let o5 = c3 * &f2 + c4 * &f5 + c5 * &f8;

    let o6 = c6.clone() * f0 + c7.clone() * f3 + c8.clone() * f6;
    let o7 = c6.clone() * f1 + c7.clone() * f4 + c8.clone() * f7;
    let o8 = c6 * f2 + c7 * f5 + c8 * f8;

    [o0, o1, o2, o3, o4, o5, o6, o7, o8]
}

/// Invert a 3x3 matrix and panic if matrix is not invertible.
#[inline]
pub fn matrix_inverse<T>(a: Mat3<T>) -> Mat3<T>
where
    T: Recip + IsValidDivisor<Mask = bool> + Arithmetics + Clone,
{
    // This function runs fastest with assert and no destructuring. The `det`'s
    // location should not be changed until benched that it's faster elsewhere
    assert!(a.len() > 8);

    let d0 = a[4].clone() * &a[8] - a[5].clone() * &a[7];
    let d1 = a[3].clone() * &a[8] - a[5].clone() * &a[6];
    let d2 = a[3].clone() * &a[7] - a[4].clone() * &a[6];
    let mut det = a[0].clone() * &d0 - a[1].clone() * &d1 + a[2].clone() * &d2;
    let d3 = a[1].clone() * &a[8] - a[2].clone() * &a[7];
    let d4 = a[0].clone() * &a[8] - a[2].clone() * &a[6];
    let d5 = a[0].clone() * &a[7] - a[1].clone() * &a[6];
    let d6 = a[1].clone() * &a[5] - a[2].clone() * &a[4];
    let d7 = a[0].clone() * &a[5] - a[2].clone() * &a[3];
    let d8 = a[0].clone() * &a[4] - a[1].clone() * &a[3];

    if !det.is_valid_divisor() {
        panic!("The given matrix is not invertible")
    }
    det = det.recip();

    [
        d0 * &det,
        -d3 * &det,
        d6 * &det,
        -d1 * &det,
        d4 * &det,
        -d7 * &det,
        d2 * &det,
        -d5 * &det,
        d8 * det,
    ]
}

/// Maps a matrix from one item type to another.
///
/// This turned out to be easier for the compiler to optimize than `matrix.map(f)`.
#[inline(always)]
pub fn matrix_map<T, U>(matrix: Mat3<T>, mut f: impl FnMut(T) -> U) -> Mat3<U> {
    let [m1, m2, m3, m4, m5, m6, m7, m8, m9] = matrix;
    [
        f(m1),
        f(m2),
        f(m3),
        f(m4),
        f(m5),
        f(m6),
        f(m7),
        f(m8),
        f(m9),
    ]
}

/// Generates the Srgb to Xyz transformation matrix for a given white point.
#[inline]
pub fn rgb_to_xyz_matrix<S, T>() -> Mat3<T>
where
    S: RgbSpace,
    S::Primaries: Primaries<T>,
    S::WhitePoint: WhitePoint<T>,
    T: Recip + IsValidDivisor<Mask = bool> + Arithmetics + Clone + FromScalar<Scalar = T>,
    Yxy<Any, T>: IntoColorUnclamped<Xyz<Any, T>>,
{
    let r = S::Primaries::red().into_color_unclamped();
    let g = S::Primaries::green().into_color_unclamped();
    let b = S::Primaries::blue().into_color_unclamped();

    let matrix = mat3_from_primaries(r, g, b);

    let s_matrix: Rgb<Linear<S>, T> = multiply_xyz_to_rgb(
        matrix_inverse(matrix.clone()),
        S::WhitePoint::get_xyz().with_white_point(),
    );

    // Destructuring has some performance benefits, don't change unless measured
    let [t0, t1, t2, t3, t4, t5, t6, t7, t8] = matrix;

    [
        t0 * &s_matrix.red,
        t1 * &s_matrix.green,
        t2 * &s_matrix.blue,
        t3 * &s_matrix.red,
        t4 * &s_matrix.green,
        t5 * &s_matrix.blue,
        t6 * s_matrix.red,
        t7 * s_matrix.green,
        t8 * s_matrix.blue,
    ]
}

#[rustfmt::skip]
#[inline]
fn mat3_from_primaries<T>(r: Xyz<Any, T>, g: Xyz<Any, T>, b: Xyz<Any, T>) -> Mat3<T> {
    [
        r.x, g.x, b.x,
        r.y, g.y, b.y,
        r.z, g.z, b.z,
    ]
}

#[cfg(feature = "approx")]
#[cfg(test)]
mod test {
    use super::{matrix_inverse, multiply_3x3, multiply_xyz, rgb_to_xyz_matrix};
    use crate::chromatic_adaptation::AdaptInto;
    use crate::encoding::{Linear, Srgb};
    use crate::rgb::Rgb;
    use crate::white_point::D50;
    use crate::Xyz;

    #[test]
    fn matrix_multiply_3x3() {
        let inp1 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 2.0, 1.0, 3.0];
        let inp2 = [4.0, 5.0, 6.0, 6.0, 5.0, 4.0, 4.0, 6.0, 5.0];
        let expected = [28.0, 33.0, 29.0, 28.0, 31.0, 31.0, 26.0, 33.0, 31.0];

        let computed = multiply_3x3(inp1, inp2);
        for (t1, t2) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(t1, t2);
        }
    }

    #[test]
    fn matrix_multiply_xyz() {
        let inp1 = [0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0.2, 0.1, 0.3];
        let inp2 = Xyz::new(0.4, 0.6, 0.8);

        let expected = Xyz::new(0.4, 0.32, 0.38);

        let computed = multiply_xyz(inp1, inp2);
        assert_relative_eq!(expected, computed)
    }

    #[test]
    fn matrix_inverse_check_1() {
        let input: [f64; 9] = [3.0, 0.0, 2.0, 2.0, 0.0, -2.0, 0.0, 1.0, 1.0];

        let expected: [f64; 9] = [0.2, 0.2, 0.0, -0.2, 0.3, 1.0, 0.2, -0.3, 0.0];
        let computed = matrix_inverse(input);
        for (t1, t2) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(t1, t2);
        }
    }
    #[test]
    fn matrix_inverse_check_2() {
        let input: [f64; 9] = [1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0];

        let expected: [f64; 9] = [-1.0, -1.0, 2.0, -1.0, 0.0, 1.0, 2.0, 1.0, -2.0];
        let computed = matrix_inverse(input);
        for (t1, t2) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(t1, t2);
        }
    }
    #[test]
    #[should_panic]
    fn matrix_inverse_panic() {
        let input: [f64; 9] = [1.0, 0.0, 0.0, 2.0, 0.0, 0.0, -4.0, 6.0, 1.0];
        matrix_inverse(input);
    }

    #[rustfmt::skip]
    #[test]
    fn d65_rgb_conversion_matrix() {
        let expected = [
            0.4124564, 0.3575761, 0.1804375,
            0.2126729, 0.7151522, 0.0721750,
            0.0193339, 0.1191920, 0.9503041
        ];
        let computed = rgb_to_xyz_matrix::<Srgb, f64>();
        for (e, c) in expected.iter().zip(computed.iter()) {
            assert_relative_eq!(e, c, epsilon = 0.000001)
        }
    }

    #[test]
    fn d65_to_d50() {
        let input: Rgb<Linear<Srgb>> = Rgb::new(1.0, 1.0, 1.0);
        let expected: Rgb<Linear<(Srgb, D50)>> = Rgb::new(1.0, 1.0, 1.0);

        let computed: Rgb<Linear<(Srgb, D50)>> = input.adapt_into();
        assert_relative_eq!(expected, computed, epsilon = 0.000001);
    }
}