zune_jpeg/idct/
avx2.rs

1/*
2 * Copyright (c) 2023.
3 *
4 * This software is free software;
5 *
6 * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
7 */
8
9#![cfg(any(target_arch = "x86", target_arch = "x86_64"))]
10//! AVX optimised IDCT.
11//!
12//! Okay not thaat optimised.
13//!
14//!
15//! # The implementation
16//! The implementation is neatly broken down into two operations.
17//!
18//! 1. Test for zeroes
19//! > There is a shortcut method for idct  where when all AC values are zero, we can get the answer really quickly.
20//!  by scaling the 1/8th of the DCT coefficient of the block to the whole block and level shifting.
21//!
22//! 2. If above fails, we proceed to carry out IDCT as a two pass one dimensional algorithm.
23//! IT does two whole scans where it carries out IDCT on all items
24//! After each successive scan, data is transposed in register(thank you x86 SIMD powers). and the second
25//! pass is carried out.
26//!
27//! The code is not super optimized, it produces bit identical results with scalar code hence it's
28//! `mm256_add_epi16`
29//! and it also has the advantage of making this implementation easy to maintain.
30
31#![cfg(feature = "x86")]
32#![allow(dead_code)]
33
34#[cfg(target_arch = "x86")]
35use core::arch::x86::*;
36#[cfg(target_arch = "x86_64")]
37use core::arch::x86_64::*;
38
39use crate::unsafe_utils::{transpose, YmmRegister};
40
41const SCALE_BITS: i32 = 512 + 65536 + (128 << 17);
42
43/// SAFETY
44/// ------
45///
46/// It is the responsibility of the CALLER to ensure that  this function is
47/// called in contexts where the CPU supports it
48///
49///
50/// For documentation see module docs.
51
52pub fn idct_avx2(in_vector: &mut [i32; 64], out_vector: &mut [i16], stride: usize) {
53    unsafe {
54        // We don't call this method directly because we need to flag the code function
55        // with #[target_feature] so that the compiler does do weird stuff with
56        // it
57        idct_int_avx2_inner(in_vector, out_vector, stride);
58    }
59}
60
61#[target_feature(enable = "avx2")]
62#[allow(
63    clippy::too_many_lines,
64    clippy::cast_possible_truncation,
65    clippy::similar_names,
66    clippy::op_ref,
67    unused_assignments,
68    clippy::zero_prefixed_literal
69)]
70pub unsafe fn idct_int_avx2_inner(
71    in_vector: &mut [i32; 64], out_vector: &mut [i16], stride: usize
72) {
73    let mut pos = 0;
74
75    // load into registers
76    //
77    // We sign extend i16's to i32's and calculate them with extended precision and
78    // later reduce them to i16's when we are done carrying out IDCT
79
80    let rw0 = _mm256_loadu_si256(in_vector[00..].as_ptr().cast());
81    let rw1 = _mm256_loadu_si256(in_vector[08..].as_ptr().cast());
82    let rw2 = _mm256_loadu_si256(in_vector[16..].as_ptr().cast());
83    let rw3 = _mm256_loadu_si256(in_vector[24..].as_ptr().cast());
84    let rw4 = _mm256_loadu_si256(in_vector[32..].as_ptr().cast());
85    let rw5 = _mm256_loadu_si256(in_vector[40..].as_ptr().cast());
86    let rw6 = _mm256_loadu_si256(in_vector[48..].as_ptr().cast());
87    let rw7 = _mm256_loadu_si256(in_vector[56..].as_ptr().cast());
88
89    // Forward DCT and quantization may cause all the AC terms to be zero, for such
90    // cases we can try to accelerate it
91
92    // Basically the poop is that whenever the array has 63 zeroes, its idct is
93    // (arr[0]>>3)or (arr[0]/8) propagated to all the elements.
94    // We first test to see if the array contains zero elements and if it does, we go the
95    // short way.
96    //
97    // This reduces IDCT overhead from about 39% to 18 %, almost half
98
99    // Do another load for the first row, we don't want to check DC value, because
100    // we only care about AC terms
101    let rw8 = _mm256_loadu_si256(in_vector[1..].as_ptr().cast());
102
103    let zero = _mm256_setzero_si256();
104
105    let mut non_zero = 0;
106
107    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw8, zero));
108    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw1, zero));
109    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw2, zero));
110    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw3, zero));
111
112    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw4, zero));
113    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw5, zero));
114    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw6, zero));
115    non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw7, zero));
116
117    if non_zero == -8 {
118        // AC terms all zero, idct of the block is  is ( coeff[0] * qt[0] )/8 + 128 (bias)
119        // (and clamped to 255)
120        let idct_value = _mm_set1_epi16(((in_vector[0] >> 3) + 128).clamp(0, 255) as i16);
121
122        macro_rules! store {
123            ($pos:tt,$value:tt) => {
124                // store
125                _mm_storeu_si128(
126                    out_vector
127                        .get_mut($pos..$pos + 8)
128                        .unwrap()
129                        .as_mut_ptr()
130                        .cast(),
131                    $value
132                );
133                $pos += stride;
134            };
135        }
136        store!(pos, idct_value);
137        store!(pos, idct_value);
138        store!(pos, idct_value);
139        store!(pos, idct_value);
140
141        store!(pos, idct_value);
142        store!(pos, idct_value);
143        store!(pos, idct_value);
144        store!(pos, idct_value);
145
146        return;
147    }
148
149    let mut row0 = YmmRegister { mm256: rw0 };
150    let mut row1 = YmmRegister { mm256: rw1 };
151    let mut row2 = YmmRegister { mm256: rw2 };
152    let mut row3 = YmmRegister { mm256: rw3 };
153
154    let mut row4 = YmmRegister { mm256: rw4 };
155    let mut row5 = YmmRegister { mm256: rw5 };
156    let mut row6 = YmmRegister { mm256: rw6 };
157    let mut row7 = YmmRegister { mm256: rw7 };
158
159    macro_rules! dct_pass {
160        ($SCALE_BITS:tt,$scale:tt) => {
161            // There are a lot of ways to do this
162            // but to keep it simple(and beautiful), ill make a direct translation of the
163            // scalar code to also make this code fully transparent(this version and the non
164            // avx one should produce identical code.)
165
166            // even part
167            let p1 = (row2 + row6) * 2217;
168
169            let mut t2 = p1 + row6 * -7567;
170            let mut t3 = p1 + row2 * 3135;
171
172            let mut t0 = YmmRegister {
173                mm256: _mm256_slli_epi32((row0 + row4).mm256, 12)
174            };
175            let mut t1 = YmmRegister {
176                mm256: _mm256_slli_epi32((row0 - row4).mm256, 12)
177            };
178
179            let x0 = t0 + t3 + $SCALE_BITS;
180            let x3 = t0 - t3 + $SCALE_BITS;
181            let x1 = t1 + t2 + $SCALE_BITS;
182            let x2 = t1 - t2 + $SCALE_BITS;
183
184            let p3 = row7 + row3;
185            let p4 = row5 + row1;
186            let p1 = row7 + row1;
187            let p2 = row5 + row3;
188            let p5 = (p3 + p4) * 4816;
189
190            t0 = row7 * 1223;
191            t1 = row5 * 8410;
192            t2 = row3 * 12586;
193            t3 = row1 * 6149;
194
195            let p1 = p5 + p1 * -3685;
196            let p2 = p5 + (p2 * -10497);
197            let p3 = p3 * -8034;
198            let p4 = p4 * -1597;
199
200            t3 += p1 + p4;
201            t2 += p2 + p3;
202            t1 += p2 + p4;
203            t0 += p1 + p3;
204
205            row0.mm256 = _mm256_srai_epi32((x0 + t3).mm256, $scale);
206            row1.mm256 = _mm256_srai_epi32((x1 + t2).mm256, $scale);
207            row2.mm256 = _mm256_srai_epi32((x2 + t1).mm256, $scale);
208            row3.mm256 = _mm256_srai_epi32((x3 + t0).mm256, $scale);
209
210            row4.mm256 = _mm256_srai_epi32((x3 - t0).mm256, $scale);
211            row5.mm256 = _mm256_srai_epi32((x2 - t1).mm256, $scale);
212            row6.mm256 = _mm256_srai_epi32((x1 - t2).mm256, $scale);
213            row7.mm256 = _mm256_srai_epi32((x0 - t3).mm256, $scale);
214        };
215    }
216
217    // Process rows
218    dct_pass!(512, 10);
219    transpose(
220        &mut row0, &mut row1, &mut row2, &mut row3, &mut row4, &mut row5, &mut row6, &mut row7
221    );
222
223    // process columns
224    dct_pass!(SCALE_BITS, 17);
225    transpose(
226        &mut row0, &mut row1, &mut row2, &mut row3, &mut row4, &mut row5, &mut row6, &mut row7
227    );
228
229    // Pack i32 to i16's,
230    // clamp them to be between 0-255
231    // Undo shuffling
232    // Store back to array
233    macro_rules! permute_store {
234        ($x:tt,$y:tt,$index:tt,$out:tt) => {
235            let a = _mm256_packs_epi32($x, $y);
236
237            // Clamp the values after packing, we can clamp more values at once
238            let b = clamp_avx(a);
239
240            // /Undo shuffling
241            let c = _mm256_permute4x64_epi64(b, shuffle(3, 1, 2, 0));
242
243            // store first vector
244            _mm_storeu_si128(
245                ($out)
246                    .get_mut($index..$index + 8)
247                    .unwrap()
248                    .as_mut_ptr()
249                    .cast(),
250                _mm256_extractf128_si256::<0>(c)
251            );
252            $index += stride;
253            // second vector
254            _mm_storeu_si128(
255                ($out)
256                    .get_mut($index..$index + 8)
257                    .unwrap()
258                    .as_mut_ptr()
259                    .cast(),
260                _mm256_extractf128_si256::<1>(c)
261            );
262            $index += stride;
263        };
264    }
265    // Pack and write the values back to the array
266    permute_store!((row0.mm256), (row1.mm256), pos, out_vector);
267    permute_store!((row2.mm256), (row3.mm256), pos, out_vector);
268    permute_store!((row4.mm256), (row5.mm256), pos, out_vector);
269    permute_store!((row6.mm256), (row7.mm256), pos, out_vector);
270}
271
272#[inline]
273#[target_feature(enable = "avx2")]
274unsafe fn clamp_avx(reg: __m256i) -> __m256i {
275    let min_s = _mm256_set1_epi16(0);
276    let max_s = _mm256_set1_epi16(255);
277
278    let max_v = _mm256_max_epi16(reg, min_s); //max(a,0)
279    let min_v = _mm256_min_epi16(max_v, max_s); //min(max(a,0),255)
280    return min_v;
281}
282
283/// A copy of `_MM_SHUFFLE()` that doesn't require
284/// a nightly compiler
285#[inline]
286const fn shuffle(z: i32, y: i32, x: i32, w: i32) -> i32 {
287    ((z << 6) | (y << 4) | (x << 2) | w)
288}