1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
//! Traits for abstracting over numeric types.
//!
//! These traits describe various numeric properties and operations. They are
//! similar in purpose to the immensely helpful traits in
//! [`num-traits`](https://crates.io/crates/num-traits/), but the structure is
//! different. The philosophy behind this module is to focus on capabilities,
//! rather than categories, and to assume as little as possible. Within reason.
//!
//! Instead of having large traits with a lot of methods and dependencies, each
//! operation (or group of operations), are separated into their own traits.
//! This allows number types to have partial compatibility by only implementing
//! some of the traits, and new methods can be added as new traits without
//! affecting old functionality.
use core::ops::{Add, Div, Mul, Neg, Sub};
use crate::bool_mask::HasBoolMask;
#[cfg(all(not(feature = "std"), feature = "libm"))]
mod libm;
#[cfg(feature = "wide")]
mod wide;
/// Numbers that belong to the real number set. It's both a semantic marker and
/// provides a constructor for number constants.
pub trait Real {
/// Create a number from an `f64` value, mainly for converting constants.
#[must_use]
fn from_f64(n: f64) -> Self;
}
/// Trait for creating a vectorized value from a scalar value.
pub trait FromScalar {
/// The scalar type that is stored in each lane of `Self`. Scalar types
/// should set this to equal `Self`.
type Scalar;
/// Create a new vectorized value where each lane is `scalar`. This
/// corresponds to `splat` for SIMD types.
#[must_use]
fn from_scalar(scalar: Self::Scalar) -> Self;
}
/// Conversion from an array of scalars to a vectorized value.
pub trait FromScalarArray<const N: usize>: FromScalar {
/// Creates a vectorized value from an array of scalars.
#[must_use]
fn from_array(scalars: [Self::Scalar; N]) -> Self;
}
/// Conversion from a vectorized value to an array of scalars.
pub trait IntoScalarArray<const N: usize>: FromScalar {
/// Creates an array of scalars from a vectorized value.
#[must_use]
fn into_array(self) -> [Self::Scalar; N];
}
/// Methods for the value `0`.
pub trait Zero {
/// Create a new `0` value.
#[must_use]
fn zero() -> Self;
}
/// Methods for the value `1`.
pub trait One {
/// Create a new `1` value.
#[must_use]
fn one() -> Self;
}
/// A helper trait that collects arithmetic traits under one name.
pub trait Arithmetics
where
Self: Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Neg<Output = Self>
+ Sized,
for<'a> Self: Add<&'a Self, Output = Self>
+ Sub<&'a Self, Output = Self>
+ Mul<&'a Self, Output = Self>
+ Div<&'a Self, Output = Self>,
{
}
impl<T> Arithmetics for T
where
T: Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Neg<Output = Self>
+ Sized,
for<'a> Self: Add<&'a Self, Output = Self>
+ Sub<&'a Self, Output = Self>
+ Mul<&'a Self, Output = Self>
+ Div<&'a Self, Output = Self>,
{
}
/// Methods for getting the largest or smallest of two values.
pub trait MinMax: Sized {
/// Return the smallest of `self` and `other`.
#[must_use]
fn min(self, other: Self) -> Self;
/// Return the largest of `self` and `other`.
#[must_use]
fn max(self, other: Self) -> Self;
/// Return a pair of `self` and `other`, where the smallest is the first
/// value and the largest is the second.
#[must_use]
fn min_max(self, other: Self) -> (Self, Self);
}
/// Trigonometry methods and their inverses.
pub trait Trigonometry: Sized {
/// Compute the sine of `self` (in radians).
#[must_use]
fn sin(self) -> Self;
/// Compute the cosine of `self` (in radians).
#[must_use]
fn cos(self) -> Self;
/// Simultaneously compute the sine and cosine of `self` (in radians).
/// Returns `(sin(self), cos(self))`.
#[must_use]
fn sin_cos(self) -> (Self, Self);
/// Compute the tangent of `self` (in radians).
#[must_use]
fn tan(self) -> Self;
/// Compute the arcsine in radians of `self`.
#[must_use]
fn asin(self) -> Self;
/// Compute the arccosine in radians of `self`.
#[must_use]
fn acos(self) -> Self;
/// Compute the arctangent in radians of `self`.
#[must_use]
fn atan(self) -> Self;
/// Compute the arctangent in radians of `self` (y) and `other` (x).
#[must_use]
fn atan2(self, other: Self) -> Self;
}
/// Method for getting the absolute value of a number.
pub trait Abs {
/// Returns the absolute value of `self`.
#[must_use]
fn abs(self) -> Self;
}
/// Method for getting the square root of a number.
pub trait Sqrt {
/// Returns the square root of `self`.
#[must_use]
fn sqrt(self) -> Self;
}
/// Method for getting the cube root of a number.
pub trait Cbrt {
/// Returns the cube root of `self`.
#[must_use]
fn cbrt(self) -> Self;
}
/// Method for raising a number by a real number exponent.
///
/// The name "powf" is kept for familiarity, even though the exponent doesn't
/// have to be a floating point number.
pub trait Powf {
/// Return `self` raised to the power of `exp`.
#[must_use]
fn powf(self, exp: Self) -> Self;
}
/// Method for raising a number by a signed integer exponent.
pub trait Powi {
/// Return `self` raised to the power of `exp`.
#[must_use]
fn powi(self, exp: i32) -> Self;
}
/// Method for raising a number by a n unsigned integer exponent.
pub trait Powu {
/// Return `self` raised to the power of `exp`.
#[must_use]
fn powu(self, exp: u32) -> Self;
}
/// Method for calculating `1 / x`.
pub trait Recip {
/// Return `1 / self`.
#[must_use]
fn recip(self) -> Self;
}
/// Methods for calculating `e ^ x`,
pub trait Exp {
/// Return `e ^ self`.
#[must_use]
fn exp(self) -> Self;
}
/// Methods for checking if a number can be used as a divisor.
pub trait IsValidDivisor: HasBoolMask {
/// Return `true` if `self` can be used as a divisor in `x / self`.
///
/// This checks that division by `self` will result in a finite and defined
/// value. Integers check for `self != 0`, while floating point types call
/// [`is_normal`][std::primitive::f32::is_normal].
#[must_use]
fn is_valid_divisor(&self) -> Self::Mask;
}
/// Methods for calculating the lengths of a hypotenuse.
pub trait Hypot {
/// Returns the length of the hypotenuse formed by `self` and `other`, i.e.
/// `sqrt(self * self + other * other)`.
#[must_use]
fn hypot(self, other: Self) -> Self;
}
/// Methods for rounding numbers to integers.
pub trait Round {
/// Return the nearest integer to `self`. Round half-way cases away from 0.0.
#[must_use]
fn round(self) -> Self;
/// Return the largest integer less than or equal to `self`.
#[must_use]
fn floor(self) -> Self;
/// Return the smallest integer greater than or equal to `self`.
#[must_use]
fn ceil(self) -> Self;
}
/// Trait for clamping a value.
pub trait Clamp {
/// Clamp self to be within the range `[min, max]`.
#[must_use]
fn clamp(self, min: Self, max: Self) -> Self;
/// Clamp self to be within the range `[min, ∞)`.
#[must_use]
fn clamp_min(self, min: Self) -> Self;
/// Clamp self to be within the range `(-∞, max]`.
#[must_use]
fn clamp_max(self, max: Self) -> Self;
}
/// Assigning trait for clamping a value.
pub trait ClampAssign {
/// Clamp self to be within the range `[min, max]`.
fn clamp_assign(&mut self, min: Self, max: Self);
/// Clamp self to be within the range `[min, ∞)`.
fn clamp_min_assign(&mut self, min: Self);
/// Clamp self to be within the range `(-∞, max]`.
fn clamp_max_assign(&mut self, max: Self);
}
/// Combined multiplication and addition operation.
pub trait MulAdd {
/// Multiplies self with `m` and add `a`, as in `(self * m) + a`.
#[must_use]
fn mul_add(self, m: Self, a: Self) -> Self;
}
/// Combined multiplication and subtraction operation.
pub trait MulSub {
/// Multiplies self with `m` and subtract `s`, as in `(self * m) - s`.
#[must_use]
fn mul_sub(self, m: Self, s: Self) -> Self;
}
/// Saturating addition operation.
pub trait SaturatingAdd<Rhs = Self> {
/// The resulting type.
type Output;
/// Returns the sum of `self` and `other`, but saturates instead of overflowing.
#[must_use]
fn saturating_add(self, other: Rhs) -> Self::Output;
}
/// Saturating subtraction operation.
pub trait SaturatingSub<Rhs = Self> {
/// The resulting type.
type Output;
/// Returns the difference of `self` and `other`, but saturates instead of overflowing.
#[must_use]
fn saturating_sub(self, other: Rhs) -> Self::Output;
}
/// Trait for getting a number that represents the sign of `self`.
pub trait Signum {
/// Returns a number that represents the sign of `self`. For floating point:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * NaN if the number is NaN
fn signum(self) -> Self;
}
/// Trait for getting the natural logarithm of `self`.
pub trait Ln {
/// Returns the natural logarithm of `self`.
fn ln(self) -> Self;
}
macro_rules! impl_uint {
($($ty: ident),+) => {
$(
impl FromScalar for $ty {
type Scalar = Self;
#[inline]
fn from_scalar(scalar: Self) -> Self {
scalar
}
}
impl FromScalarArray<1> for $ty {
#[inline]
fn from_array(scalars: [Self; 1]) -> Self {
let [scalar] = scalars;
scalar
}
}
impl IntoScalarArray<1> for $ty {
#[inline]
fn into_array(self) -> [Self; 1] {
[self]
}
}
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1
}
}
impl MinMax for $ty {
#[inline]
fn min(self, other: Self) -> Self {
core::cmp::Ord::min(self, other)
}
#[inline]
fn max(self, other: Self) -> Self {
core::cmp::Ord::max(self, other)
}
#[inline]
fn min_max(self, other: Self) -> (Self, Self) {
if self > other {
(other, self)
} else {
(self, other)
}
}
}
impl Powu for $ty {
#[inline]
fn powu(self, exp: u32) -> Self {
pow(self, exp)
}
}
impl IsValidDivisor for $ty {
#[inline]
fn is_valid_divisor(&self) -> bool {
*self != 0
}
}
impl Clamp for $ty {
#[inline]
fn clamp(self, min: Self, max: Self) -> Self {
core::cmp::Ord::clamp(self, min, max)
}
#[inline]
fn clamp_min(self, min: Self) -> Self {
core::cmp::Ord::max(self, min)
}
#[inline]
fn clamp_max(self, max: Self) -> Self {
core::cmp::Ord::min(self, max)
}
}
impl ClampAssign for $ty {
#[inline]
fn clamp_assign(&mut self, min: Self, max: Self) {
*self = core::cmp::Ord::clamp(*self, min, max);
}
#[inline]
fn clamp_min_assign(&mut self, min: Self) {
*self = core::cmp::Ord::max(*self, min);
}
#[inline]
fn clamp_max_assign(&mut self, max: Self) {
*self = core::cmp::Ord::min(*self, max);
}
}
impl MulAdd for $ty {
#[inline]
fn mul_add(self, m: Self, a: Self) -> Self {
(self * m) + a
}
}
impl MulSub for $ty {
#[inline]
fn mul_sub(self, m: Self, s: Self) -> Self {
(self * m) - s
}
}
impl SaturatingAdd for $ty {
type Output = $ty;
#[inline]
fn saturating_add(self, other: Self) -> Self{
<$ty>::saturating_add(self, other)
}
}
impl SaturatingSub for $ty {
type Output = $ty;
#[inline]
fn saturating_sub(self, other: Self) -> Self{
<$ty>::saturating_sub(self, other)
}
}
)+
};
}
macro_rules! impl_float {
($($ty: ident),+) => {
$(
impl Real for $ty {
#[inline]
fn from_f64(n: f64) -> $ty {
n as $ty
}
}
impl FromScalar for $ty {
type Scalar = Self;
#[inline]
fn from_scalar(scalar: Self) -> Self {
scalar
}
}
impl FromScalarArray<1> for $ty {
#[inline]
fn from_array(scalars: [Self; 1]) -> Self {
let [scalar] = scalars;
scalar
}
}
impl IntoScalarArray<1> for $ty {
#[inline]
fn into_array(self) -> [Self; 1] {
[self]
}
}
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0.0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1.0
}
}
impl MinMax for $ty {
#[inline]
fn max(self, other: Self) -> Self {
$ty::max(self, other)
}
#[inline]
fn min(self, other: Self) -> Self {
$ty::min(self, other)
}
#[inline]
fn min_max(self, other: Self) -> (Self, Self) {
if self > other {
(other, self)
} else {
(self, other)
}
}
}
impl Powu for $ty {
#[inline]
fn powu(self, exp: u32) -> Self {
pow(self, exp)
}
}
impl IsValidDivisor for $ty {
#[inline]
fn is_valid_divisor(&self) -> bool {
$ty::is_normal(*self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Trigonometry for $ty {
#[inline]
fn sin(self) -> Self {
$ty::sin(self)
}
#[inline]
fn cos(self) -> Self {
$ty::cos(self)
}
#[inline]
fn sin_cos(self) -> (Self, Self) {
$ty::sin_cos(self)
}
#[inline]
fn tan(self) -> Self {
$ty::tan(self)
}
#[inline]
fn asin(self) -> Self {
$ty::asin(self)
}
#[inline]
fn acos(self) -> Self {
$ty::acos(self)
}
#[inline]
fn atan(self) -> Self {
$ty::atan(self)
}
#[inline]
fn atan2(self, other: Self) -> Self {
$ty::atan2(self, other)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Abs for $ty {
#[inline]
fn abs(self) -> Self {
$ty::abs(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Sqrt for $ty {
#[inline]
fn sqrt(self) -> Self {
$ty::sqrt(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Cbrt for $ty {
#[inline]
fn cbrt(self) -> Self {
$ty::cbrt(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Powf for $ty {
#[inline]
fn powf(self, exp: Self) -> Self {
$ty::powf(self, exp)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Powi for $ty {
#[inline]
fn powi(self, exp: i32) -> Self {
$ty::powi(self, exp)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Recip for $ty {
#[inline]
fn recip(self) -> Self {
$ty::recip(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Exp for $ty {
#[inline]
fn exp(self) -> Self {
$ty::exp(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Hypot for $ty {
#[inline]
fn hypot(self, other: Self) -> Self {
$ty::hypot(self, other)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Round for $ty {
#[inline]
fn round(self) -> Self {
$ty::round(self)
}
#[inline]
fn floor(self) -> Self {
$ty::floor(self)
}
#[inline]
fn ceil(self) -> Self {
$ty::ceil(self)
}
}
impl Clamp for $ty {
#[inline]
fn clamp(self, min: Self, max: Self) -> Self {
$ty::clamp(self, min, max)
}
#[inline]
fn clamp_min(self, min: Self) -> Self {
$ty::max(self, min)
}
#[inline]
fn clamp_max(self, max: Self) -> Self {
$ty::min(self, max)
}
}
impl ClampAssign for $ty {
#[inline]
fn clamp_assign(&mut self, min: Self, max: Self) {
*self = $ty::clamp(*self, min, max);
}
#[inline]
fn clamp_min_assign(&mut self, min: Self) {
*self = $ty::max(*self, min);
}
#[inline]
fn clamp_max_assign(&mut self, max: Self) {
*self = $ty::min(*self, max);
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl MulAdd for $ty {
#[inline]
fn mul_add(self, m: Self, a: Self) -> Self {
$ty::mul_add(self, m, a)
}
}
impl MulSub for $ty {
#[inline]
fn mul_sub(self, m: Self, s: Self) -> Self {
(self * m) - s
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Signum for $ty {
#[inline]
fn signum(self) -> Self {
$ty::signum(self)
}
}
#[cfg(any(feature = "std", all(test, not(feature = "libm"))))]
impl Ln for $ty {
#[inline]
fn ln(self) -> Self {
$ty::ln(self)
}
}
)+
};
}
impl_uint!(u8, u16, u32, u64, u128);
impl_float!(f32, f64);
/// "borrowed" from num_traits
///
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// Note that `0⁰` (`pow(0, 0)`) returns `1`. Mathematically this is undefined.
//
// # Example
//
// ```rust
// use num_traits::pow;
//
// assert_eq!(pow(2i8, 4), 16);
// assert_eq!(pow(6u8, 3), 216);
// assert_eq!(pow(0u8, 0), 1); // Be aware if this case affects you
// ```
#[inline]
fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: u32) -> T {
if exp == 0 {
return T::one();
}
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 {
return base;
}
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
/// Trait for lanewise comparison of two values.
///
/// This is similar to `PartialEq` and `PartialOrd`, except that it returns a
/// Boolean mask instead of `bool` or [`Ordering`][core::cmp::Ordering].
pub trait PartialCmp: HasBoolMask {
/// Compares `self < other`.
#[must_use]
fn lt(&self, other: &Self) -> Self::Mask;
/// Compares `self <= other`.
#[must_use]
fn lt_eq(&self, other: &Self) -> Self::Mask;
/// Compares `self == other`.
#[must_use]
fn eq(&self, other: &Self) -> Self::Mask;
/// Compares `self != other`.
#[must_use]
fn neq(&self, other: &Self) -> Self::Mask;
/// Compares `self >= other`.
#[must_use]
fn gt_eq(&self, other: &Self) -> Self::Mask;
/// Compares `self > other`.
#[must_use]
fn gt(&self, other: &Self) -> Self::Mask;
}
macro_rules! impl_partial_cmp {
($($ty:ident),+) => {
$(
impl PartialCmp for $ty {
#[inline]
fn lt(&self, other: &Self) -> Self::Mask {
self < other
}
#[inline]
fn lt_eq(&self, other: &Self) -> Self::Mask {
self <= other
}
#[inline]
fn eq(&self, other: &Self) -> Self::Mask {
self == other
}
#[inline]
fn neq(&self, other: &Self) -> Self::Mask {
self != other
}
#[inline]
fn gt_eq(&self, other: &Self) -> Self::Mask {
self >= other
}
#[inline]
fn gt(&self, other: &Self) -> Self::Mask {
self > other
}
}
)+
};
}
impl_partial_cmp!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, f32, f64);