Struct cosmic::iced::advanced::graphics::geometry::path::lyon_path::geom::cubic_bezier::CubicBezierSegment
source · pub struct CubicBezierSegment<S> {
pub from: Point2D<S, UnknownUnit>,
pub ctrl1: Point2D<S, UnknownUnit>,
pub ctrl2: Point2D<S, UnknownUnit>,
pub to: Point2D<S, UnknownUnit>,
}
Expand description
A 2d curve segment defined by four points: the beginning of the segment, two control points and the end of the segment.
The curve is defined by equation:²
∀ t ∈ [0..1], P(t) = (1 - t)³ * from + 3 * (1 - t)² * t * ctrl1 + 3 * t² * (1 - t) * ctrl2 + t³ * to
Fields§
§from: Point2D<S, UnknownUnit>
§ctrl1: Point2D<S, UnknownUnit>
§ctrl2: Point2D<S, UnknownUnit>
§to: Point2D<S, UnknownUnit>
Implementations§
source§impl<S> CubicBezierSegment<S>where
S: Scalar,
impl<S> CubicBezierSegment<S>where
S: Scalar,
sourcepub fn sample(&self, t: S) -> Point2D<S, UnknownUnit>
pub fn sample(&self, t: S) -> Point2D<S, UnknownUnit>
Sample the curve at t (expecting t between 0 and 1).
sourcepub fn x(&self, t: S) -> S
pub fn x(&self, t: S) -> S
Sample the x coordinate of the curve at t (expecting t between 0 and 1).
sourcepub fn y(&self, t: S) -> S
pub fn y(&self, t: S) -> S
Sample the y coordinate of the curve at t (expecting t between 0 and 1).
sourcepub fn solve_t_for_x(&self, x: S) -> ArrayVec<S, 3>
pub fn solve_t_for_x(&self, x: S) -> ArrayVec<S, 3>
Return the parameter values corresponding to a given x coordinate.
sourcepub fn solve_t_for_y(&self, y: S) -> ArrayVec<S, 3>
pub fn solve_t_for_y(&self, y: S) -> ArrayVec<S, 3>
Return the parameter values corresponding to a given y coordinate.
sourcepub fn derivative(&self, t: S) -> Vector2D<S, UnknownUnit>
pub fn derivative(&self, t: S) -> Vector2D<S, UnknownUnit>
Sample the curve’s derivative at t (expecting t between 0 and 1).
sourcepub fn dx(&self, t: S) -> S
pub fn dx(&self, t: S) -> S
Sample the x coordinate of the curve’s derivative at t (expecting t between 0 and 1).
sourcepub fn dy(&self, t: S) -> S
pub fn dy(&self, t: S) -> S
Sample the y coordinate of the curve’s derivative at t (expecting t between 0 and 1).
sourcepub fn split_range(&self, t_range: Range<S>) -> CubicBezierSegment<S>
pub fn split_range(&self, t_range: Range<S>) -> CubicBezierSegment<S>
Return the sub-curve inside a given range of t.
This is equivalent to splitting at the range’s end points.
sourcepub fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>)
pub fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>)
Split this curve into two sub-curves.
sourcepub fn before_split(&self, t: S) -> CubicBezierSegment<S>
pub fn before_split(&self, t: S) -> CubicBezierSegment<S>
Return the curve before the split point.
sourcepub fn after_split(&self, t: S) -> CubicBezierSegment<S>
pub fn after_split(&self, t: S) -> CubicBezierSegment<S>
Return the curve after the split point.
pub fn baseline(&self) -> LineSegment<S>
sourcepub fn is_linear(&self, tolerance: S) -> bool
pub fn is_linear(&self, tolerance: S) -> bool
Returns true if the curve can be approximated with a single line segment, given a tolerance threshold.
sourcepub fn fat_line(&self) -> (LineEquation<S>, LineEquation<S>)
pub fn fat_line(&self) -> (LineEquation<S>, LineEquation<S>)
Computes a “fat line” of this segment.
A fat line is two conservative lines between which the segment is fully contained.
sourcepub fn transformed<T>(&self, transform: &T) -> CubicBezierSegment<S>where
T: Transformation<S>,
pub fn transformed<T>(&self, transform: &T) -> CubicBezierSegment<S>where
T: Transformation<S>,
Applies the transform to this curve and returns the results.
sourcepub fn flip(&self) -> CubicBezierSegment<S>
pub fn flip(&self) -> CubicBezierSegment<S>
Swap the beginning and the end of the segment.
sourcepub fn to_quadratic(&self) -> QuadraticBezierSegment<S>
pub fn to_quadratic(&self) -> QuadraticBezierSegment<S>
Approximate the curve with a single quadratic bézier segment.
This is terrible as a general approximation but works if the cubic curve does not have inflection points and is “flat” enough. Typically usable after subdividing the curve a few times.
sourcepub fn to_quadratic_error(&self) -> S
pub fn to_quadratic_error(&self) -> S
Evaluates an upper bound on the maximum distance between the curve
and its quadratic approximation obtained using to_quadratic
.
sourcepub fn is_quadratic(&self, tolerance: S) -> bool
pub fn is_quadratic(&self, tolerance: S) -> bool
Returns true if the curve can be safely approximated with a single quadratic bézier segment given the provided tolerance threshold.
Equivalent to comparing to_quadratic_error
with the tolerance threshold, avoiding
the cost of two square roots.
sourcepub fn num_quadratics(&self, tolerance: S) -> u32
pub fn num_quadratics(&self, tolerance: S) -> u32
Computes the number of quadratic bézier segments required to approximate this cubic curve given a tolerance threshold.
Derived by Raph Levien from section 10.6 of Sedeberg’s CAGD notes https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub#section.10.6 and the error metric from the caffein owl blog post http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
sourcepub fn flattened(&self, tolerance: S) -> Flattened<S> ⓘ
pub fn flattened(&self, tolerance: S) -> Flattened<S> ⓘ
Returns the flattened representation of the curve as an iterator, starting after the current point.
sourcepub fn for_each_monotonic_range<F>(&self, cb: &mut F)
pub fn for_each_monotonic_range<F>(&self, cb: &mut F)
Invokes a callback for each monotonic part of the segment.
sourcepub fn for_each_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
pub fn for_each_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
Invokes a callback for each monotonic part of the segment.
sourcepub fn for_each_y_monotonic_range<F>(&self, cb: &mut F)
pub fn for_each_y_monotonic_range<F>(&self, cb: &mut F)
Invokes a callback for each y-monotonic part of the segment.
sourcepub fn for_each_y_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
pub fn for_each_y_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
Invokes a callback for each y-monotonic part of the segment.
sourcepub fn for_each_x_monotonic_range<F>(&self, cb: &mut F)
pub fn for_each_x_monotonic_range<F>(&self, cb: &mut F)
Invokes a callback for each x-monotonic part of the segment.
sourcepub fn for_each_x_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
pub fn for_each_x_monotonic<F>(&self, cb: &mut F)where
F: FnMut(&CubicBezierSegment<S>),
Invokes a callback for each x-monotonic part of the segment.
sourcepub fn for_each_quadratic_bezier<F>(&self, tolerance: S, cb: &mut F)where
F: FnMut(&QuadraticBezierSegment<S>),
pub fn for_each_quadratic_bezier<F>(&self, tolerance: S, cb: &mut F)where
F: FnMut(&QuadraticBezierSegment<S>),
Approximates the cubic bézier curve with sequence of quadratic ones, invoking a callback at each step.
sourcepub fn for_each_quadratic_bezier_with_t<F>(&self, tolerance: S, cb: &mut F)
pub fn for_each_quadratic_bezier_with_t<F>(&self, tolerance: S, cb: &mut F)
Approximates the cubic bézier curve with sequence of quadratic ones, invoking a callback at each step.
sourcepub fn for_each_flattened<F>(&self, tolerance: S, callback: &mut F)where
F: FnMut(&LineSegment<S>),
pub fn for_each_flattened<F>(&self, tolerance: S, callback: &mut F)where
F: FnMut(&LineSegment<S>),
Approximates the curve with sequence of line segments.
The tolerance
parameter defines the maximum distance between the curve and
its approximation.
sourcepub fn for_each_flattened_with_t<F>(&self, tolerance: S, callback: &mut F)
pub fn for_each_flattened_with_t<F>(&self, tolerance: S, callback: &mut F)
Approximates the curve with sequence of line segments.
The tolerance
parameter defines the maximum distance between the curve and
its approximation.
The end of the t parameter range at the final segment is guaranteed to be equal to 1.0
.
sourcepub fn approximate_length(&self, tolerance: S) -> S
pub fn approximate_length(&self, tolerance: S) -> S
Compute the length of the segment using a flattened approximation.
sourcepub fn for_each_inflection_t<F>(&self, cb: &mut F)where
F: FnMut(S),
pub fn for_each_inflection_t<F>(&self, cb: &mut F)where
F: FnMut(S),
Invokes a callback at each inflection point if any.
sourcepub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F)where
F: FnMut(S),
pub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F)where
F: FnMut(S),
Return local x extrema or None if this curve is monotonic.
This returns the advancements along the curve, not the actual x position.
sourcepub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F)where
F: FnMut(S),
pub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F)where
F: FnMut(S),
Return local y extrema or None if this curve is monotonic.
This returns the advancements along the curve, not the actual y position.
sourcepub fn y_maximum_t(&self) -> S
pub fn y_maximum_t(&self) -> S
Find the advancement of the y-most position in the curve.
This returns the advancement along the curve, not the actual y position.
sourcepub fn y_minimum_t(&self) -> S
pub fn y_minimum_t(&self) -> S
Find the advancement of the y-least position in the curve.
This returns the advancement along the curve, not the actual y position.
sourcepub fn x_maximum_t(&self) -> S
pub fn x_maximum_t(&self) -> S
Find the advancement of the x-most position in the curve.
This returns the advancement along the curve, not the actual x position.
sourcepub fn x_minimum_t(&self) -> S
pub fn x_minimum_t(&self) -> S
Find the x-least position in the curve.
sourcepub fn fast_bounding_box(&self) -> Box2D<S, UnknownUnit>
pub fn fast_bounding_box(&self) -> Box2D<S, UnknownUnit>
Returns a conservative rectangle the curve is contained in.
This method is faster than bounding_box
but more conservative.
sourcepub fn fast_bounding_range_x(&self) -> (S, S)
pub fn fast_bounding_range_x(&self) -> (S, S)
Returns a conservative range of x that contains this curve.
sourcepub fn fast_bounding_range_y(&self) -> (S, S)
pub fn fast_bounding_range_y(&self) -> (S, S)
Returns a conservative range of y that contains this curve.
sourcepub fn bounding_box(&self) -> Box2D<S, UnknownUnit>
pub fn bounding_box(&self) -> Box2D<S, UnknownUnit>
Returns a conservative rectangle that contains the curve.
sourcepub fn bounding_range_x(&self) -> (S, S)
pub fn bounding_range_x(&self) -> (S, S)
Returns the smallest range of x that contains this curve.
sourcepub fn bounding_range_y(&self) -> (S, S)
pub fn bounding_range_y(&self) -> (S, S)
Returns the smallest range of y that contains this curve.
sourcepub fn is_x_monotonic(&self) -> bool
pub fn is_x_monotonic(&self) -> bool
Returns whether this segment is monotonic on the x axis.
sourcepub fn is_y_monotonic(&self) -> bool
pub fn is_y_monotonic(&self) -> bool
Returns whether this segment is monotonic on the y axis.
sourcepub fn is_monotonic(&self) -> bool
pub fn is_monotonic(&self) -> bool
Returns whether this segment is fully monotonic.
sourcepub fn cubic_intersections_t(
&self,
curve: &CubicBezierSegment<S>,
) -> ArrayVec<(S, S), 9>
pub fn cubic_intersections_t( &self, curve: &CubicBezierSegment<S>, ) -> ArrayVec<(S, S), 9>
Computes the intersections (if any) between this segment and another one.
The result is provided in the form of the t
parameters of each point along the curves. To
get the intersection points, sample the curves at the corresponding values.
Returns endpoint intersections where an endpoint intersects the interior of the other curve, but not endpoint/endpoint intersections.
Returns no intersections if either curve is a point.
sourcepub fn cubic_intersections(
&self,
curve: &CubicBezierSegment<S>,
) -> ArrayVec<Point2D<S, UnknownUnit>, 9>
pub fn cubic_intersections( &self, curve: &CubicBezierSegment<S>, ) -> ArrayVec<Point2D<S, UnknownUnit>, 9>
Computes the intersection points (if any) between this segment and another one.
sourcepub fn quadratic_intersections_t(
&self,
curve: &QuadraticBezierSegment<S>,
) -> ArrayVec<(S, S), 9>
pub fn quadratic_intersections_t( &self, curve: &QuadraticBezierSegment<S>, ) -> ArrayVec<(S, S), 9>
Computes the intersections (if any) between this segment a quadratic bézier segment.
The result is provided in the form of the t
parameters of each point along the curves. To
get the intersection points, sample the curves at the corresponding values.
Returns endpoint intersections where an endpoint intersects the interior of the other curve, but not endpoint/endpoint intersections.
Returns no intersections if either curve is a point.
sourcepub fn quadratic_intersections(
&self,
curve: &QuadraticBezierSegment<S>,
) -> ArrayVec<Point2D<S, UnknownUnit>, 9>
pub fn quadratic_intersections( &self, curve: &QuadraticBezierSegment<S>, ) -> ArrayVec<Point2D<S, UnknownUnit>, 9>
Computes the intersection points (if any) between this segment and a quadratic bézier segment.
sourcepub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<S, 3>
pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<S, 3>
Computes the intersections (if any) between this segment and a line.
The result is provided in the form of the t
parameters of each
point along curve. To get the intersection points, sample the curve
at the corresponding values.
sourcepub fn line_intersections(
&self,
line: &Line<S>,
) -> ArrayVec<Point2D<S, UnknownUnit>, 3>
pub fn line_intersections( &self, line: &Line<S>, ) -> ArrayVec<Point2D<S, UnknownUnit>, 3>
Computes the intersection points (if any) between this segment and a line.
sourcepub fn line_segment_intersections_t(
&self,
segment: &LineSegment<S>,
) -> ArrayVec<(S, S), 3>
pub fn line_segment_intersections_t( &self, segment: &LineSegment<S>, ) -> ArrayVec<(S, S), 3>
Computes the intersections (if any) between this segment and a line segment.
The result is provided in the form of the t
parameters of each
point along curve and segment. To get the intersection points, sample
the segments at the corresponding values.
pub fn from(&self) -> Point2D<S, UnknownUnit>
pub fn to(&self) -> Point2D<S, UnknownUnit>
pub fn line_segment_intersections( &self, segment: &LineSegment<S>, ) -> ArrayVec<Point2D<S, UnknownUnit>, 3>
pub fn drag( &self, t: S, new_position: Point2D<S, UnknownUnit>, ) -> CubicBezierSegment<S>
pub fn drag_with_weight( &self, t: S, new_position: Point2D<S, UnknownUnit>, weight: S, ) -> CubicBezierSegment<S>
pub fn to_f32(&self) -> CubicBezierSegment<f32>
pub fn to_f64(&self) -> CubicBezierSegment<f64>
Trait Implementations§
source§impl<S> Clone for CubicBezierSegment<S>where
S: Clone,
impl<S> Clone for CubicBezierSegment<S>where
S: Clone,
source§fn clone(&self) -> CubicBezierSegment<S>
fn clone(&self) -> CubicBezierSegment<S>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<S> Debug for CubicBezierSegment<S>where
S: Debug,
impl<S> Debug for CubicBezierSegment<S>where
S: Debug,
source§impl<S> PartialEq for CubicBezierSegment<S>where
S: PartialEq,
impl<S> PartialEq for CubicBezierSegment<S>where
S: PartialEq,
source§impl<S> Segment for CubicBezierSegment<S>where
S: Scalar,
impl<S> Segment for CubicBezierSegment<S>where
S: Scalar,
type Scalar = S
source§fn from(&self) -> Point2D<S, UnknownUnit>
fn from(&self) -> Point2D<S, UnknownUnit>
source§fn to(&self) -> Point2D<S, UnknownUnit>
fn to(&self) -> Point2D<S, UnknownUnit>
source§fn sample(&self, t: S) -> Point2D<S, UnknownUnit>
fn sample(&self, t: S) -> Point2D<S, UnknownUnit>
source§fn derivative(&self, t: S) -> Vector2D<S, UnknownUnit>
fn derivative(&self, t: S) -> Vector2D<S, UnknownUnit>
source§fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>)
fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>)
source§fn before_split(&self, t: S) -> CubicBezierSegment<S>
fn before_split(&self, t: S) -> CubicBezierSegment<S>
source§fn after_split(&self, t: S) -> CubicBezierSegment<S>
fn after_split(&self, t: S) -> CubicBezierSegment<S>
source§fn split_range(&self, t_range: Range<S>) -> CubicBezierSegment<S>
fn split_range(&self, t_range: Range<S>) -> CubicBezierSegment<S>
source§fn flip(&self) -> CubicBezierSegment<S>
fn flip(&self) -> CubicBezierSegment<S>
source§fn approximate_length(&self, tolerance: S) -> S
fn approximate_length(&self, tolerance: S) -> S
source§fn for_each_flattened_with_t(
&self,
tolerance: <CubicBezierSegment<S> as Segment>::Scalar,
callback: &mut dyn FnMut(&LineSegment<S>, Range<S>),
)
fn for_each_flattened_with_t( &self, tolerance: <CubicBezierSegment<S> as Segment>::Scalar, callback: &mut dyn FnMut(&LineSegment<S>, Range<S>), )
impl<S> Copy for CubicBezierSegment<S>where
S: Copy,
impl<S> StructuralPartialEq for CubicBezierSegment<S>
Auto Trait Implementations§
impl<S> Freeze for CubicBezierSegment<S>where
S: Freeze,
impl<S> RefUnwindSafe for CubicBezierSegment<S>where
S: RefUnwindSafe,
impl<S> Send for CubicBezierSegment<S>where
S: Send,
impl<S> Sync for CubicBezierSegment<S>where
S: Sync,
impl<S> Unpin for CubicBezierSegment<S>where
S: Unpin,
impl<S> UnwindSafe for CubicBezierSegment<S>where
S: UnwindSafe,
Blanket Implementations§
source§impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
source§fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
source§fn adapt_into(self) -> D
fn adapt_into(self) -> D
source§impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
source§impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
source§fn arrays_from(colors: C) -> T
fn arrays_from(colors: C) -> T
source§impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
source§fn arrays_into(self) -> C
fn arrays_into(self) -> C
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
source§type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
parameters
when converting.source§fn cam16_into_unclamped(
self,
parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>,
) -> T
fn cam16_into_unclamped( self, parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
source§fn components_from(colors: C) -> T
fn components_from(colors: C) -> T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<T> FromAngle<T> for T
impl<T> FromAngle<T> for T
source§fn from_angle(angle: T) -> T
fn from_angle(angle: T) -> T
angle
.source§impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
source§fn from_stimulus(other: U) -> T
fn from_stimulus(other: U) -> T
other
into Self
, while performing the appropriate scaling,
rounding and clamping.source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
source§impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
source§fn into_angle(self) -> U
fn into_angle(self) -> U
T
.source§impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
source§type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
parameters
when converting.source§fn into_cam16_unclamped(
self,
parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>,
) -> T
fn into_cam16_unclamped( self, parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.source§impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
source§fn into_color(self) -> U
fn into_color(self) -> U
source§impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
source§fn into_color_unclamped(self) -> U
fn into_color_unclamped(self) -> U
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> IntoStimulus<T> for T
impl<T> IntoStimulus<T> for T
source§fn into_stimulus(self) -> T
fn into_stimulus(self) -> T
self
into T
, while performing the appropriate scaling,
rounding and clamping.source§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
source§type Error = <C as TryFromComponents<T>>::Error
type Error = <C as TryFromComponents<T>>::Error
try_into_colors
fails to cast.source§fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
source§impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
source§fn try_into_color(self) -> Result<U, OutOfBounds<U>>
fn try_into_color(self) -> Result<U, OutOfBounds<U>>
OutOfBounds
error is returned which contains
the unclamped color. Read more